Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Food ; 4(7): 575-584, 2023 07.
Article in English | MEDLINE | ID: mdl-37460646

ABSTRACT

Food systems are the largest users of land and water resources worldwide. Using a multi-model approach to track food through the global trade network, we calculated the land footprint (LF) and water footprint (WF) of food consumption in the European Union (EU). We estimated the EU LF as 140-222 Mha yr-1 and WF as 569-918 km3 yr-1. These amounts are 5-7% of the global LF and 6-10% of the global WF of agriculture, with the EU representing 6% of the global population. We also calculated the global LF of livestock grazing, accounting only for grass eaten, to be 1,411-1,657 Mha yr-1, and the global LF of agriculture to be 2,809-3,014 Mha yr-1, which is about two-thirds of what the Food and Agriculture Organization Statistics (FAOSTAT) database reports. We discuss here the different methods for calculating the LF for livestock grazing, underscoring the need for a consistent methodology when monitoring the food LF and WF reduction goals set by the EU's Farm To Fork Strategy.


Subject(s)
Livestock , Water , Animals , European Union , Agriculture , Water Supply
2.
J Environ Manage ; 286: 112228, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33677341

ABSTRACT

Biomass production generates land use impacts in the form of emissions from Forestry and Other Land Use (FOLU), i.e. due to changes in ecosystem carbon stocks. Recently, consumption-based accounting (CBA) approaches have emerged as alternatives to conventional production-based accounts, quantifying FOLU emissions associated with biomass consumption, for example, of particular territories. However, the quantification and allocation of FOLU emissions to individual biomass products, a fundamental part of CBA approaches, is a complex endeavour. Existing studies make diverging methodological choices, which are rarely critically discussed. In this study, we provide a structured overview of existing CBA approaches to estimating FOLU emissions. We cluster the literature in a two-by-two grid, distinguishing the primary element under investigation (impacts of changing consumption patterns in a region vs. impacts of consumption on production landscapes) and the analytical lens (prospective vs retrospective). Further, we identify three distinct dimensions which characterise the way in which different studies allocate FOLU emissions to biomass products: the choice of reference system and the spatial and temporal scales. Finally, we identify three frontiers that require future attention: (1) overcoming structural biases which underestimate FOLU emissions from territories that experienced deforestation in the distant past, (2) explicitly tackling the interdependence of proximate causes and ultimate drivers of land use change, and (3) assessing uncertainties and understanding the effects of land management. In this way, we enable a critical assessment of appropriate methods, support a nuanced interpretation of results from particular approaches as well as enhance the informative value of CBA approaches related to FOLU emissions. Our analysis contributes to discussions on sustainable land use practices with respect to biomass consumption and has implications for informing international climate policy in scenarios where consumption-based approaches are adopted in practice.


Subject(s)
Carbon , Ecosystem , Biomass , Conservation of Natural Resources , Prospective Studies , Retrospective Studies
3.
Nat Ecol Evol ; 2(7): 1071-1074, 2018 07.
Article in English | MEDLINE | ID: mdl-29784980

ABSTRACT

The United Nations 2030 Agenda for Sustainable Development calls for urgent actions to reduce global biodiversity loss. Here, we synthesize >44,000 articles published in the past decade to assess the research focus on global drivers of loss. Relative research efforts on different drivers are not well aligned with their assessed impact, and multiple driver interactions are hardly considered. Research on drivers of biodiversity loss needs urgent realignment to match predicted severity and inform policy goals.


Subject(s)
Biodiversity , Conservation of Natural Resources , Extinction, Biological , Policy , Research
SELECTION OF CITATIONS
SEARCH DETAIL
...