Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 66(5): e0231921, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35416708

ABSTRACT

Antibiotics are the mainstay of therapy for bacterial vaginosis (BV). However, the rate of treatment failure in patients with recurrent BV is about 50%. Herein, we investigated potential mechanisms of therapy failure, including the propensity of resistance formation and biofilm activity of metronidazole (MDZ), clindamycin (CLI), and PM-477, a novel investigational candidate that is a genetically engineered endolysin with specificity for bacteria of the genus Gardnerella. Determination of the MIC indicated that 60% of a panel of 22 Gardnerella isolates of four different species were resistant to MDZ, while all strains were highly susceptible to CLI and to the endolysin PM-477. Six strains, all of which were initially susceptible to MDZ, were passaged with MDZ or its more potent hydroxy metabolite. All of them generated full resistance after 5 to 10 passages, resulting in MICs of >512 µg/mL. In contrast, only a mild increase in MIC was found for PM-477. There was also no cross-resistance formation, as MDZ-resistant Gardnerella strains remained highly susceptible to PM-477, both in suspension and in preformed biofilms. Strains that were resistant to MDZ in suspension were also tolerant to MDZ at >2,048 µg/mL when growing as biofilm. All strains were susceptible to PM-477 when grown as preformed biofilms, at minimum biofilm eradication concentrations (MBECs) in the range of 1 to 4 µg/mL. Surprisingly, the MBEC of CLI was >512 µg/mL for 7 out of 9 tested Gardnerella strains, all of which were susceptible to CLI when growing in suspension. The observed challenges of MDZ and CLI due to resistance formation and ineffectiveness on biofilm, respectively, could be one explanation for the frequent treatment failures in uncomplicated or recurrent BV. Therefore, the high efficacy of PM-477 in eliminating Gardnerella in in vitro biofilms, as well as its high resilience to resistance formation, makes PM-477 a promising potential alternative for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.


Subject(s)
Vaginosis, Bacterial , Biofilms , Clindamycin/pharmacology , Clindamycin/therapeutic use , Endopeptidases , Female , Gardnerella , Gardnerella vaginalis , Humans , Metronidazole/therapeutic use , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology
2.
Pathogens ; 10(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435575

ABSTRACT

Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome and a characteristic biofilm formed on the vaginal epithelium, which is initiated and dominated by Gardnerella bacteria, and is frequently refractory to antibiotic treatment. We investigated endolysins of the type 1,4-beta-N-acetylmuramidase encoded on Gardnerella prophages as an alternative treatment. When recombinantly expressed, these proteins demonstrated strong bactericidal activity against four different Gardnerella species. By domain shuffling, we generated several engineered endolysins with 10-fold higher bactericidal activity than any wild-type enzyme. When tested against a panel of 20 Gardnerella strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13-8 µg/mL. PM-477 had no effect on beneficial lactobacilli or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested by fluorescence in situ hybridization on vaginal samples of fifteen patients with either first time or recurring bacterial vaginosis. In thirteen cases, PM-477 killed the Gardnerella bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome. The high selectivity and effectiveness in eliminating Gardnerella, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.

3.
Article in English | MEDLINE | ID: mdl-30297365

ABSTRACT

Biofilm-residing bacteria embedded in an extracellular matrix are protected from diverse physicochemical insults. In addition to the general recalcitrance of biofilm bacteria, high bacterial loads in biofilm-associated infections significantly diminish the efficacy of antimicrobials due to a low per-cell antibiotic concentration. Accordingly, present antimicrobial treatment protocols that have been established to serve the eradication of acute infections fail to clear biofilm-associated chronic infections. In the present study, we applied automated confocal microscopy on Pseudomonas aeruginosa to monitor dynamic killing of biofilm-grown bacteria by tobramycin and colistin in real time. We revealed that the time required for surviving bacteria to repopulate the biofilm could be taken as a measure for effectiveness of the antimicrobial treatment. It depends on the (i) nature and concentration of the antibiotic, (ii) duration of antibiotic treatment, (iii) application as monotherapy or combination therapy, and (iv) interval of drug administration. The vicious cycle of killing and repopulation of biofilm bacteria could also be broken in an in vivo model system by applying successive antibiotic dosages at intervals that do not allow full reconstitution of the biofilm communities. Treatment regimens that consider the important aspects of antimicrobial killing kinetics bear the potential to improve control of biofilm regrowth. This is an important and underestimated factor that is bound to ensure sustainable treatment success of chronic infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Colistin/pharmacology , Colonic Neoplasms/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Tobramycin/pharmacology , Animals , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/pharmacokinetics , Biofilms/growth & development , Colistin/blood , Colistin/pharmacokinetics , Colonic Neoplasms/complications , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Colony Count, Microbial , Disease Models, Animal , Drug Administration Schedule , Drug Dosage Calculations , Drug Therapy, Combination/methods , Female , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/pathogenicity , Tobramycin/blood , Tobramycin/pharmacokinetics , Treatment Outcome
4.
Sci Rep ; 6: 32097, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27611778

ABSTRACT

Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.


Subject(s)
Biofilms/growth & development , Computer Simulation , Models, Biological , Pseudomonas aeruginosa/growth & development , Bacterial Adhesion , Bacterial Load , Cell Division , Diffusion , Food , Microscopy, Confocal , Movement , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...