Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 856(Pt 2): 159114, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36181825

ABSTRACT

Knowledge of the evaporation rate from rock surfaces is critical for obtaining the water flux in the rock-atmosphere interphase, for understanding moisture distribution, and for quantification of damage from salt crystallization within the rock. Evaporation from rocks is a poorly understood, yet important process. We present a study on evaporation from 10 lithologies, including sedimentary, igneous, and metamorphic granular rocks. The evaporation rate was measured from rock cores with a set vaporization plane depth in a humid temperate continental climate during at least eight observation periods for eight months. The measured evaporation rate varied over four orders of magnitude (0.4-2447 mm/year), being dependent on the vaporization plane depth, lithology, and climate seasonality at the site. The evaporation rate from the rock cores was calculated based on Fick's law. The calculations reasonably followed the measured values. Using contrasting, yet field-realistic values in the calculation, virtual time series of the seasonal evaporation rate from natural rock outcrops in three different climates (arid, semi-arid, humid) were constructed. This revealed possible annual evaporative losses from the rock outcrops (0.1 mm-896 mm). Within the range of observed values, the evaporation rate was mostly influenced by the vaporization plane depth (by up to 2.2 orders of magnitude), which was followed by: lithology (up to 1.1 order of magnitude), local climate (up to 1.0 order of magnitude), and climate seasonality (up to 0.8 order of magnitude). Thus, our study shows the key role of the vaporization plane depth in the evaporation rate. This approach can find employment in a large number of investigations such as in the evaporation estimates and hydrologic balance in rock landforms and rocky slopes, hydrologic processes in the shallow rock subsurface, living conditions of endolithic and epilithic organisms, weathering processes, and in the protection of carved or rock constructed cultural heritage.


Subject(s)
Atmosphere , Climate , Atmosphere/chemistry , Weather
2.
Environ Sci Technol ; 41(3): 703-9, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17328173

ABSTRACT

Sulfate aerosols are harmful as respirable particles. They also play a role as cloud condensation nuclei and have radiative effects on global climate. A combination of delta18O-SO4 data with catchment sulfur mass balances was used to constrain processes affecting S cycling in the atmosphere and spruce forests of the Czech Republic. Extremely high S fluxes via spruce throughfall and runoff were measured at Jezeri (49 and 80 kg S ha(-1) yr(-1), respectively). The second catchment, Na Lizu, was 10 times less polluted. In both catchments, delta18O-SO4 decreased in the following order: open-area precipitation > throughfall > runoff. The delta18O-SO4 values of throughfall exhibited a seasonal pattern at both sites, with maxima in summer and minima in winter. This seasonal pattern paralleled delta18O-H2O values, which were offset by -18 per thousand. Sulfate in throughfall was predominantly formed by heterogeneous (aqueous) oxidation of SO2. Wet-deposited sulfate in an open area did not show systematic delta18O-SO4 trends, suggesting formation by homogeneous (gaseous) oxidation and/or transport from large distances. The percentage of incoming S that is organically cycled in soil was similar under the high and the low pollution. High-temperature 18O-rich sulfate was not detected, which contrasts with North American industrial sites.


Subject(s)
Air Pollutants/analysis , Ecosystem , Oxygen Isotopes/analysis , Sulfates/analysis , Trees , Atmosphere , Climate , Environmental Monitoring , Europe , North America , Rain , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...