Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38713543

ABSTRACT

The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.


Subject(s)
Diptera , Hemolymph , Larva , Animals , Larva/growth & development , Larva/metabolism , Diptera/metabolism , Diptera/growth & development , Hemolymph/metabolism , Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Diet , Saccharomycetales/metabolism , Animal Feed/analysis , Candida/metabolism , Candida/growth & development
2.
Article in English | MEDLINE | ID: mdl-37001582

ABSTRACT

In the present study, we examined the metabolic composition of black soldier fly (BSF) larvae from natural populations (Ruhama: R and She'ar Yashuv: S) and from a laboratory-reared colony (C) using untargeted metabolomics analysis. The results revealed significant over-accumulation of metabolites from phenylalanine and purine metabolism and biosynthesis of phenylalanine, tyrosine and tryptophan, and arginine in both natural populations, and enriched pathway analysis, compared to the laboratory-reared colony. In addition, we found accumulation of glutathione metabolism and aminoacyl tRNA biosynthesis related metabolites in R, and linoleic acid and tryptophan metabolism related metabolites in S. Moreover, we found down-accumulation of metabolites belonging to alanine, aspartate and glutamate metabolism in both natural populations: amino sugar and nucleotide sugar metabolism only in the R population and aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism only in the S population. Overall, the results suggest that the naturally growing larvae require large quantities of metabolites from aromatic amino acids (phenylalanine, tyrosine and tryptophan) for defense against pathogens under natural conditions e.g., melanization. In addition, glutathione metabolites help the BSF to survive under oxidative stress. Further study of the functional metabolomics of naturally growing and laboratory-reared larvae could provide a platform for better understanding of BSF larval survival mechanisms in complex environments.


Subject(s)
Diptera , Animals , Larva , Tryptophan , Metabolomics , RNA, Transfer
3.
Heliyon ; 9(3): e13756, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36895384

ABSTRACT

Tropomyosin receptor kinase B (TrkB) serves as a pivotal factor in various cancers. To identify novel natural compounds with TrkB-inhibiting properties, a screening approach was applied using extracts from a collection of wild and cultivated mushroom fruiting bodies, and Ba/F3 cells that ectopically express TrkB (TPR-TrkB). We selected mushroom extracts that selectively inhibited proliferation of the TPR-TrkB cells. We then evaluated the ability of exogenous interleukin 3 to rescue growth inhibition by the selected TrkB-positive extracts. An ethyl acetate extract of Auricularia auricula-judae actively inhibited auto-phosphorylation of TrkB. LC-MS/MS analysis of this extract revealed substances that might be responsible for the observed activity. This screening approach demonstrates, for the first time, that extracts originating from the mushroom A. auricula-judae exhibit TrkB-inhibition properties that might hold therapeutic potential for TrkB-positive cancers.

4.
Gut ; 72(5): 918-928, 2023 05.
Article in English | MEDLINE | ID: mdl-36627187

ABSTRACT

OBJECTIVE: Gestational diabetes mellitus (GDM) is a condition in which women without diabetes are diagnosed with glucose intolerance during pregnancy, typically in the second or third trimester. Early diagnosis, along with a better understanding of its pathophysiology during the first trimester of pregnancy, may be effective in reducing incidence and associated short-term and long-term morbidities. DESIGN: We comprehensively profiled the gut microbiome, metabolome, inflammatory cytokines, nutrition and clinical records of 394 women during the first trimester of pregnancy, before GDM diagnosis. We then built a model that can predict GDM onset weeks before it is typically diagnosed. Further, we demonstrated the role of the microbiome in disease using faecal microbiota transplant (FMT) of first trimester samples from pregnant women across three unique cohorts. RESULTS: We found elevated levels of proinflammatory cytokines in women who later developed GDM, decreased faecal short-chain fatty acids and altered microbiome. We next confirmed that differences in GDM-associated microbial composition during the first trimester drove inflammation and insulin resistance more than 10 weeks prior to GDM diagnosis using FMT experiments. Following these observations, we used a machine learning approach to predict GDM based on first trimester clinical, microbial and inflammatory markers with high accuracy. CONCLUSION: GDM onset can be identified in the first trimester of pregnancy, earlier than currently accepted. Furthermore, the gut microbiome appears to play a role in inflammation-induced GDM pathogenesis, with interleukin-6 as a potential contributor to pathogenesis. Potential GDM markers, including microbiota, can serve as targets for early diagnostics and therapeutic intervention leading to prevention.


Subject(s)
Diabetes, Gestational , Microbiota , Pregnancy , Female , Humans , Diabetes, Gestational/diagnosis , Pregnancy Trimester, Third , Inflammation , Cytokines
5.
Plants (Basel) ; 11(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35406958

ABSTRACT

Powdery mildew caused by the fungus Erysiphe necator is a major grape disease worldwide. It attacks foliage and berries and reduces yield and wine quality. Fungicides are mainly used for combating the disease. Fungicide resistance and the global requisite to reduce pesticide deployment encourage the use of environment-friendly alternatives for disease management. Our field experiments showed that the foliar application of the potassium phosphate fertilizer Top-KP+ (1-50-33 NPK) reduced disease incidence on leaves and clusters by 15-65% and severity by 75-90%, compared to untreated vines. Top-KP+ mixed with Nanovatz (containing the micronutrients boron (B) and zinc (Zn)) or with TruPhos Platinum (a mixture containing N, P2O5, K2O, Zn, B, Mg, Fe, Mn, Cu, Mo, and CO) further reduced disease incidence by 30-90% and disease severity by 85-95%. These fertilizers were as effective as the fungicide tebuconazole. Tank mixtures of fertilizers and tebuconazole further enhanced control efficacy in the vineyards. The modes of action of fertilizers in disease control were elucidated via tests with grape seedlings, microscopy, and berry metabolomics. Fertilizers applied preventively to the foliage of grape seedlings inhibited powdery mildew development. Application onto existing mildew colonies plasmolyzed mycelia and conidia and arrested the development of the disease. Berries treated with fertilizers or with a fungicide showed a significant increase in anti-fungal and antioxidant metabolites. Twenty-two metabolites, including non-protein amino acids and carbohydrates, known for their anti-fungal and bioactive effects, were significantly upregulated in grapes treated with fertilizers as compared to grapes treated with a fungicide, suggesting possible indirect activity against the pathogen. Esters and organic acids that contribute to wine quality were also upregulated. We conclude that integrating macro and micronutrients in spray programs in commercial vineyards shall control powdery mildew, reduce fungicide deployment, delay the buildup of fungicide resistance, and may improve wine quality.

6.
JCI Insight ; 5(21)2020 11 05.
Article in English | MEDLINE | ID: mdl-33001863

ABSTRACT

Symbiotic microbial colonization through the establishment of the intestinal microbiome is critical to many intestinal functions, including nutrient metabolism, intestinal barrier integrity, and immune regulation. Recent studies suggest that education of intestinal immunity may be ongoing in utero. However, the drivers of this process are unknown. The microbiome and its byproducts are one potential source. Whether a fetal intestinal microbiome exists is controversial, and whether microbially derived metabolites are present in utero is unknown. Here, we aimed to determine whether bacterial DNA and microbially derived metabolites can be detected in second trimester human intestinal samples. Although we were unable to amplify bacterial DNA from fetal intestines, we report a fetal metabolomic intestinal profile with an abundance of bacterially derived and host-derived metabolites commonly produced in response to microbiota. Though we did not directly assess their source and function, we hypothesize that these microbial-associated metabolites either come from the maternal microbiome and are vertically transmitted to the fetus to prime the fetal immune system and prepare the gastrointestinal tract for postnatal microbial encounters or are produced locally by bacteria that were below our detection threshold.


Subject(s)
Bacteria/metabolism , Fetus/metabolism , Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Intestines/physiology , Metabolome , Adolescent , Bacteria/genetics , Bacteria/isolation & purification , Child , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Female , Fetus/microbiology , Gastrointestinal Tract/microbiology , Gestational Age , Humans , Infant , Infant, Newborn , Intestines/microbiology , Male
7.
Front Plant Sci ; 11: 604349, 2020.
Article in English | MEDLINE | ID: mdl-33510749

ABSTRACT

Aromatic amino acids (AAAs) synthesized in plants via the shikimate pathway can serve as precursors for a wide range of secondary metabolites that are important for plant defense. The goals of the current study were to test the effect of increased AAAs on primary and secondary metabolic profiles and to reveal whether these plants are more tolerant to abiotic stresses (oxidative, drought and salt) and to Phelipanche egyptiaca (Egyptian broomrape), an obligate parasitic plant. To this end, tobacco (Nicotiana tabacum) plants were transformed with a bacterial gene (AroG) encode to feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway. Two sets of transgenic plants were obtained: the first had low expression of the AroG protein, a normal phenotype and minor metabolic changes; the second had high accumulation of the AroG protein with normal, or deleterious morphological changes having a dramatic shift in plant metabolism. Metabolic profiling analysis revealed that the leaves of the transgenic plants had increased levels of phenylalanine (up to 43-fold), tyrosine (up to 24-fold) and tryptophan (up to 10-fold) compared to control plants having an empty vector (EV) and wild type (WT) plants. The significant increase in phenylalanine was accompanied by higher levels of metabolites that belong to the phenylpropanoid pathway. AroG plants showed improved tolerance to salt stress but not to oxidative or drought stress. The most significant improved tolerance was to P. aegyptiaca. Unlike WT/EV plants that were heavily infected by the parasite, the transgenic AroG plants strongly inhibited P. aegyptiaca development, and only a few stems of the parasite appeared above the soil. This delayed development of P. aegyptiaca could be the result of higher accumulation of several phenylpropanoids in the transgenic AroG plants and in P. aegyptiaca, that apparently affected its growth. These findings indicate that high levels of AAAs and their related metabolites have the potential of controlling the development of parasitic plants.

8.
Aust Fam Physician ; 45(4): 176-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27052129

ABSTRACT

BACKGROUND: Perpetrators of domestic violence are predominantly men, and victims/survivors are usually women and children. Men who use violence in their relationships may present to general practice with relationship problems, mental health issues or substance abuse. Domestic violence has a significant negative impact on the health and wellbeing of the whole family. General practitioners (GPs) potentially play a pivotal role in identification, response and referral to men's behavioural change services. OBJECTIVE: This article aims to describe how GPs can identify and respond to men who use violence in their relationships. It takes into account that male perpetrators are not a homogenous group, coming from all socioeconomic and cultural groups. DISCUSSION: GPs have a role in the identification, management and referral of men who use violence in their relationships. Great care needs to be taken when GPs are seeing the whole family, to ensure the safety of women and children.


Subject(s)
General Practice , Intimate Partner Violence , Physician's Role , Humans , Intimate Partner Violence/prevention & control , Male , Physician-Patient Relations , Referral and Consultation , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...