Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 119: 106612, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34735931

ABSTRACT

Air-coupled ultrasonic (ACU) testing has proven to be a valuable method for increasing the speed in non-destructive ultrasonic testing and the investigation of sensitive specimens. A major obstacle to implementing ACU methods is the significant signal power loss at the air-specimen and transducer-air interfaces. The loss between transducer and air can be eliminated by using recently developed fluidic transducers. These transducers use pressurized air and a natural flow instability to generate high sound power signals. Due to this self-excited flow instability, the individual pulses are dissimilar in length, amplitude, and phase. These amplitude and angle modulated pulses offer the great opportunity to further increase the signal-to-noise ratio with pulse compression methods. In practice, multi-input multi-output (MIMO) setups reduce the time required to scan the specimen surface, but demand high pulse discriminability. By applying envelope removal techniques to the individual pulses, the pulse discriminability is increased allowing only the remaining phase information to be targeted for analysis. Finally, semi-synthetic experiments are presented to verify the applicability of the envelope removal method and highlight the suitability of the fluidic transducer for MIMO setups.

2.
Data Brief ; 38: 107280, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34458514

ABSTRACT

This data article presents characteristic acoustic and flow data of a fluidic ultrasonic transducer as well as acoustic data of a commercial piezoelectric ultrasonic transducer used in non-destructive testing for civil engineering. The flow data has been acquired using hot-wire anemometry and a Pitot tube. The three-dimensional acoustic data of both devices has been acquired using a calibrated microphone. The distribution of characteristic acoustic properties of both transducers are extracted and given in addition to the raw data. The data presented in the article will be a valuable source for reference and validation, both for developing fluidic and alternate ultrasound generation technologies. Furthermore, they will give additional insight into the acoustic-flow interaction phenomena of high speed switching devices. This article is accompanying the paper Experimental Analysis of the Acoustic Field of an Ultrasonic Pulse Induced by a Fluidic Switch (Bühling et al., 2021) published in The Journal of the Acoustical Society of America, where the data is interpreted in detail and the rationale for characteristic sound properties of the fluidic transducer are given.

3.
J Acoust Soc Am ; 149(4): 2150, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33940860

ABSTRACT

Ultrasonic inspection is a common tool for non-destructive testing in civil engineering (NDT-CE). Currently, transducers are coupled directly to the specimen surface, which makes the inspection time-consuming. Air-coupled ultrasound (ACU) transducers are more time-efficient but need a high pressure amplitude as the impedance mismatch between the air and the concrete is high and large penetration depth is needed for the inspection. Current approaches aim at eliminating the impedance mismatch between the transducer and the air to gain amplitude; however, they hardly fulfill the NDT-CE requirements. In this study, an alternative approach for ultrasound generation is presented: the signal is generated by a fluidic switch that rapidly injects a mass flow into the ambience. The acoustic field, the flow field, and their interaction are investigated. It is shown that the signal has dominant frequencies in the range of 35-60 kHz, and the amplitude is comparable to that of a commercial ACU transducer.

SELECTION OF CITATIONS
SEARCH DETAIL
...