Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(24): 15529-15544, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842208

ABSTRACT

Single-chain nanoparticles (SCNPs) are a fascinating class of soft nano-objects with promising properties and relevance to protein condensates, polymer nanocomposites, nanomedicine, bioimaging, catalysis, and drug delivery. We combine molecular dynamics simulations and equilibrium and time-dependent statistical mechanical theory to construct a unified understanding of how the internal conformational structure of SCNPs, of both a simple fractal globule-like form and more complex objects with multiple internal intermediate length scales, determines nm-scale intermolecular packing correlations, thermodynamic properties, and center-of-mass diffusion over a wide range of concentrations up to dense melts. The intermolecular pair correlations generically exhibit a distinctive deep correlation hole form due to SCNP internal connectivity structure and repulsive interparticle interactions associated with a globular-like conformation on the macromolecular scale, with concentration-dependent deviations at small separations. Unanticipated exponential-like dependences of the equation-of-state, osmotic compressibility, and center-of-mass diffusion constant on SCNP macromolecular packing fraction are theoretically predicted and confirmed via simulations. System-specific behaviors are found associated with SCNP internal structure, but overarching regularities are identified and understood based on a generalized effective globule conformation on macromolecular scales. Diffusivity slows down by 2-3 decades with increasing concentration and is understood as a consequence of a nonactivated excluded volume-driven weak-caging process associated with space-time correlated intermolecular forces experienced by the SCNP. Good agreement between the theory and simulations is established, testable predictions are made, and a quantitative comparison with viscosity measurements on a specific SCNP fluid is carried out. The basic theoretical approach can potentially be extended to treat the chemical and physical consequences of varying the structure of other classes of soft nanoparticles with distinctive internal nanoscale organization relevant in nanotechnology and nanomedicine, and the possible emergence of macromolecular kinetically arrested glasses.

2.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38364012

ABSTRACT

We extend the force-level elastically collective nonlinear Langevin equation theory to treat the spatial gradients of the alpha relaxation time and glass transition temperature, and the corresponding film-averaged quantities, to the geometrically asymmetric case of finite thickness supported films with variable fluid-substrate coupling. The latter typically nonuniversally slows down motion near the solid-liquid interface as modeled via modification of the surface dynamic free energy caging constraints that are spatially transferred into the film and which compete with the accelerated relaxation gradient induced by the vapor interface. Quantitative applications to the foundational hard sphere fluid and a polymer melt are presented. The strength of the effective fluid-substrate coupling has very large consequences for the dynamical gradients and film-averaged quantities in a film thickness and thermodynamic state dependent manner. The interference of the dynamical gradients of opposite nature emanating from the vapor and solid interfaces is determined, including the conditions for the disappearance of a bulk-like region in the film center. The relative importance of surface-induced modification of local caging vs the generic truncation of the long range collective elastic component of the activation barrier is studied. The conditions for the accuracy and failure of a simple superposition approximation for dynamical gradients in thin films are also determined. The emergence of near substrate dead layers, large gradient effects on film-averaged response functions, and a weak non-monotonic evolution of dynamic gradients in thick and cold films are briefly discussed. The connection of our theoretical results to simulations and experiments is briefly discussed, as is the extension to treat more complex glass-forming systems under nanoconfinement.

3.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38288756

ABSTRACT

Based on integrating microscopic statistical mechanical theories for structure and ideal kinetic arrest at the naive mode coupling level, we study dynamic localization, the linear elastic shear modulus, applied stress induced modulus softening, and the absolute yielding of simple biphasic binary mixtures composed of equal diameter hard and attractive spheres. The kinetic arrest map is a rich function of total packing fraction, strength of attraction, and mixture composition. The gel to attractive ideal glass transition, the degree of glass melting re-entrancy, and the crossover boundary separating repulsive glasses from attractive glasses vary with the mixture composition. Exponential and/or apparent (high) power law dependences of the elastic shear modulus on the total packing fraction are predicted with effective exponents or exponential prefactors that are sensitive to mixture composition and location in the kinetic arrest map. An analysis of the effective mean square force on a tagged particle that induces dynamic localization reveals a compensation effect between structural correlations and degree of particle localization, resulting in the emergence of a weaker dependence of the shear modulus on mixture composition at very high attraction strengths. Based on a microrheologically inspired formulation of how external stress weakens particle localization and the shear modulus, we analyze mechanical-induced modulus softening and absolute yielding, defined as a discontinuous solid-to-fluid stress-induced transition that can occur in either one or two steps. Estimates of the corresponding yield strains predict that the binary mixture becomes more brittle with increasing sticky particle composition and/or attraction strength.

4.
Soft Matter ; 19(45): 8893-8910, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955602

ABSTRACT

Biomolecular condensates formed through the phase separation of proteins and nucleic acids are widely observed, offering a fundamental means of organizing intracellular materials in a membrane-less fashion. Traditionally, these condensates have been regarded as homogeneous isotropic liquids. However, in analogy with some synthetic copolymer systems, our recent theoretical research has demonstrated that model biomolecular condensates can exhibit a microemulsion-like internal structure, contingent upon the specific sequence, inter-chain site-site interactions, and concentrated phase polymer density. Motivated by these considerations, here we present a microscopic dynamical theory for the self-diffusion constant and viscosity of a simpler class of model systems - concentrated unentangled A/B regular multiblock copolymer solutions. Our approach integrates static equilibrium local and microdomain scale structural information obtained from PRISM integral equation theory and the time evolution of the autocorrelation function of monomer scale forces at the center-of-mass level to determine the polymer diffusion constant and viscosity in a weak caging regime far from a glass or gel transition. We focus on regular multi-block systems both for simplicity and for its relevance to synthetic macromolecular science. The impact of sequence and inter-chain attraction strength on the slowing down of copolymer mass transport and flow due to local clustering enhanced collisional friction and emergent microdomain scale ordering are established. Analytic analysis and metrics employed in the study of biomolecular condensates are employed to identify key order parameters that quantity how attractive forces, packing structure, multiblock sequence, and copolymer density determine dynamical slowing down above and below the crossover to a fluctuating polymeric microemulsion state.

5.
Soft Matter ; 19(45): 8744-8763, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37937332

ABSTRACT

We generalize and apply the microscopic self-consistent cooperative hopping theory for activated penetrant dynamics in polymer melts and crosslinked networks to address the role of highly variable non-spherical molecular shape. The focus is on vastly different shaped penetrants that have identical space filling volume in order to isolate how non-spherical shape explicitly modifies dynamics over a wide range of temperature down to the kinetic glass transition temperature. The theory relates intramolecular and intermolecular structure and kinetic constraints, and reveals how different solvation packing of polymer monomers around variable shaped penetrants impact penetrant hopping. A highly shape-dependent penetrant activated relaxation, including alpha time decoupling and trajectory level cooperativity of the hopping process, is predicted in the deeply supercooled regime for relatively larger penetrants which is sensitive to whether the polymer matrix is a melt or heavily crosslinked network. In contrast, for smaller size penetrants or at high/medium temperatures the effect of isochoric penetrant shape is relatively weak. We propose an aspect ratio variable that organizes how penetrant shape influences the activated relaxation times, leading to a (near) collapse or master curve. The relative absolute values of the penetrant relaxation time (inverse hopping rate) in polymer melts versus in crosslinked networks are found to be opposite when compared at a common absolute temperature versus when they are compared at a fixed value of distance from the glass transition based on the variable Tg/T with Tg the glass transition temperature. Quantitative comparison with recent diffusion experiments on chemically complex molecular penetrants of variable shape but fixed volume in crosslinked networks reveals good agreement, and testable new predictions are made. Extension of the theoretical approach to more complex systems of high experimental interest are discussed, including applications to realize selective transport in membrane separation applications.

6.
ACS Polym Au ; 3(4): 307-317, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37576713

ABSTRACT

Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring-ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring-ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring-ring interpenetrations, governed by the onset variable N/ND, where the crossover degree of polymerization ND is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.

7.
J Chem Phys ; 159(1)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37409769

ABSTRACT

The diffusion of small molecular penetrants through polymeric materials represents an important fundamental problem, relevant to the design of materials for applications such as coatings and membranes. Polymer networks hold promise in these applications because dramatic differences in molecular diffusion can result from subtle changes in the network structure. In this paper, we use molecular simulation to understand the role that cross-linked network polymers have in governing the molecular motion of penetrants. By considering the local, activated alpha relaxation time of the penetrant and its long-time diffusive dynamics, we can determine the relative importance of activated glassy dynamics on penetrants at the segmental scale vs entropic mesh confinement on penetrant diffusion. We vary several parameters, such as the cross-linking density, temperature, and penetrant size, to show that cross-links primarily affect molecular diffusion through the modification of the matrix glass transition, with local penetrant hopping at least partially coupled to the segmental relaxation of the polymer network. This coupling is very sensitive to the local activated segmental dynamics of the surrounding matrix, and we also show that penetrant transport is affected by dynamic heterogeneity at low temperatures. To contrast, only at high temperatures and for large penetrants or when the dynamic heterogeneity effect is weak, does the effect of mesh confinement become significant, even though penetrant diffusion more broadly empirically follows similar trends as established models of mesh confinement-based transport.

8.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37489654

ABSTRACT

Biomolecular condensates can form through the liquid-liquid phase separation (LLPS) of proteins and RNAs in cells. However, other states of organization, including mesostructured network microstructures and physical gels, have been observed, the physical mechanism of which are not well understood. We use the Polymer Reference Interaction Site Model liquid state integral equation theory to study the equilibrium behavior of (generally aperiodic in sequence) biomolecular condensates based on a minimal sticker-spacer associating polymer model. The role of polymer packing fraction, sequence, and the strength and range of intermolecular interactions on macromolecular scale spatial organization and phase behavior is studied for typical sticker-spacer sequences. In addition to the prediction of conventional LLPS, a sequence-dependent strongly fluctuating polymeric microemulsion homogeneous state is predicted at high enough concentrations beyond the so-called Lifshitz-like point, which we suggest can be relevant to the dense phase of microstructured biomolecular condensates. New connections between local clustering and the formation of mesoscopic microdomains, the influence of attraction range, compressibility, and the role of spatial correlations across scales, are established. Our results are also germane to understanding the polymer physics of dense solutions of nonperiodic and unique sequence synthetic copolymers and provide a foundation to create new theories for how polymer diffusion and viscosity are modified in globally isotropic and homogeneous dense polymeric microemulsions.


Subject(s)
Biomolecular Condensates , Polymers , Cluster Analysis , Diffusion , RNA
9.
J Chem Phys ; 158(18)2023 May 14.
Article in English | MEDLINE | ID: mdl-37166070

ABSTRACT

We generalize a microscopic statistical mechanical theory of the activated dynamics of dilute spherical penetrants in glass-forming liquids to study the influence of crosslinking in polymer networks on the penetrant relaxation time and diffusivity over a wide range of temperature and crosslink fraction (fn). Our calculations are relevant to recent experimental studies of a nm-sized molecule diffusing in poly-(n-butyl methacrylate) networks. The theory predicts the penetrant relaxation time increases exponentially with the glass transition temperature, Tg(fn), which grows roughly linearly with the square root of fn due to the coupling of local hopping to longer-range collective elasticity. Moreover, Tg is also found to be proportional to a geometric confinement parameter defined as the ratio of the penetrant diameter to the mean network mesh size. The decoupling ratio of the penetrant and Kuhn segment alpha times displays a complex non-monotonic dependence on fn and temperature that is well collapsed based on the variable Tg(fn)/T. A model for the penetrant diffusion constant that combines activated relaxation and entropic mesh confinement is proposed, which results in a significantly stronger suppression of mass transport with degree of effective supercooling than predicted for the penetrant alpha time. This behavior corresponds to a new network-based type of "decoupling" of diffusion and relaxation. In contrast to the diffusion of larger nanoparticles in high temperature rubbery networks, our analysis in the supercooled regime suggests that for the penetrants studied the mesh confinement effects are of secondary importance relative to the consequences of crosslink-induced slowing down of activated hopping of glassy physics origin.

10.
ACS Cent Sci ; 9(3): 508-518, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36968535

ABSTRACT

The diffusion of molecules ("penetrants") of variable size, shape, and chemistry through dense cross-linked polymer networks is a fundamental scientific problem broadly relevant in materials, polymer, physical, and biological chemistry. Relevant applications include separation membranes, barrier materials, drug delivery, and nanofiltration. A major open question is the relationship between transport, thermodynamic state, and penetrant and polymer chemical structure. Here we combine experiment, simulation, and theory to unravel these competing effects on penetrant transport in rubbery and supercooled polymer permanent networks over a wide range of cross-link densities, size ratios, and temperatures. The crucial importance of the coupling of local penetrant hopping to polymer structural relaxation and the secondary importance of mesh confinement effects are established. Network cross-links strongly slow down nm-scale polymer relaxation, which greatly retards the activated penetrant diffusion. The demonstrated good agreement between experiment, simulation, and theory provides strong support for the size ratio (penetrant diameter to the polymer Kuhn length) as a key variable and the usefulness of coarse-grained simulation and theoretical models that average over Angstrom scale structure. The developed theory provides an understanding of the physical processes underlying the behaviors observed in experiment and simulation and suggests new strategies for enhancing selective polymer membrane design.

11.
J Chem Phys ; 158(3): 034104, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681632

ABSTRACT

The first paper of this series [J. Chem. Phys. 158, 034103 (2023)] demonstrated that excess entropy scaling holds for both fine-grained and corresponding coarse-grained (CG) systems. Despite its universality, a more exact determination of the scaling relationship was not possible due to the semi-empirical nature. In this second paper, an analytical excess entropy scaling relation is derived for bottom-up CG systems. At the single-site CG resolution, effective hard sphere systems are constructed that yield near-identical dynamical properties as the target CG systems by taking advantage of how hard sphere dynamics and excess entropy can be analytically expressed in terms of the liquid packing fraction. Inspired by classical equilibrium perturbation theories and recent advances in constructing hard sphere models for predicting activated dynamics of supercooled liquids, we propose a new approach for understanding the diffusion of molecular liquids in the normal regime using hard sphere reference fluids. The proposed "fluctuation matching" is designed to have the same amplitude of long wavelength density fluctuations (dimensionless compressibility) as the CG system. Utilizing the Enskog theory to derive an expression for hard sphere diffusion coefficients, a bridge between the CG dynamics and excess entropy is then established. The CG diffusion coefficient can be roughly estimated using various equations of the state, and an accurate prediction of accelerated CG dynamics at different temperatures is also possible in advance of running any CG simulation. By introducing another layer of coarsening, these findings provide a more rigorous method to assess excess entropy scaling and understand the accelerated CG dynamics of molecular fluids.


Subject(s)
Computer Simulation , Entropy , Diffusion
12.
J Chem Phys ; 158(3): 034103, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681649

ABSTRACT

Coarse-grained (CG) models facilitate an efficient exploration of complex systems by reducing the unnecessary degrees of freedom of the fine-grained (FG) system while recapitulating major structural correlations. Unlike structural properties, assessing dynamic properties in CG modeling is often unfeasible due to the accelerated dynamics of the CG models, which allows for more efficient structural sampling. Therefore, the ultimate goal of the present series of articles is to establish a better correspondence between the FG and CG dynamics. To assess and compare dynamical properties in the FG and the corresponding CG models, we utilize the excess entropy scaling relationship. For Paper I of this series, we provide evidence that the FG and the corresponding CG counterpart follow the same universal scaling relationship. By carefully reviewing and examining the literature, we develop a new theory to calculate excess entropies for the FG and CG systems while accounting for entropy representability. We demonstrate that the excess entropy scaling idea can be readily applied to liquid water and methanol systems at both the FG and CG resolutions. For both liquids, we reveal that the scaling exponents remain unchanged from the coarse-graining process, indicating that the scaling behavior is universal for the same underlying molecular systems. Combining this finding with the concept of mapping entropy in CG models, we show that the missing entropy plays an important role in accelerating the CG dynamics.


Subject(s)
Molecular Dynamics Simulation , Water , Entropy , Water/chemistry , Methanol/chemistry
13.
Proc Natl Acad Sci U S A ; 119(41): e2210094119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36194629

ABSTRACT

Understanding the activated transport of penetrant or tracer atoms and molecules in condensed phases is a challenging problem in chemistry, materials science, physics, and biophysics. Many angstrom- and nanometer-scale features enter due to the highly variable shape, size, interaction, and conformational flexibility of the penetrant and matrix species, leading to a dramatic diversity of penetrant dynamics. Based on a minimalist model of a spherical penetrant in equilibrated dense matrices of hard spheres, a recent microscopic theory that relates hopping transport to local structure has predicted a novel correlation between penetrant diffusivity and the matrix thermodynamic dimensionless compressibility, S0(T) (which also quantifies the amplitude of long wavelength density fluctuations), as a consequence of a fundamental statistical mechanical relationship between structure and thermodynamics. Moreover, the penetrant activation barrier is predicted to have a factorized/multiplicative form, scaling as the product of an inverse power law of S0(T) and a linear/logarithmic function of the penetrant-to-matrix size ratio. This implies an enormous reduction in chemical complexity that is verified based solely on experimental data for diverse classes of chemically complex penetrants dissolved in molecular and polymeric liquids over a wide range of temperatures down to the kinetic glass transition. The predicted corollary that the penetrant diffusion constant decreases exponentially with inverse temperature raised to an exponent determined solely by how S0(T) decreases with cooling is also verified experimentally. Our findings are relevant to fundamental questions in glassy dynamics, self-averaging of angstrom-scale chemical features, and applications such as membrane separations, barrier coatings, drug delivery, and self-healing.


Subject(s)
Glass , Physics , Diffusion , Glass/chemistry , Phase Transition , Thermodynamics
14.
ACS Macro Lett ; 11(2): 199-204, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35574769

ABSTRACT

We construct a microscopic theory for the elementary time scale of stress relaxation in dense polymer nanocomposites. The key dynamical event is proposed to involve the rearrangement of cohesive segment-nanoparticle (NP) tight bridging complexes via an activated small NP dilational motion, which allows the confined segments to relax. The corresponding activation energy is determined by the NP bridge coordination number and potential of mean force barrier. The activation energy varies nonlinearly with interfacial cohesion strength and NP concentration, and a universal master curve is predicted. The theory is in very good agreement with experiments. The underlying ideas are relevant to a variety of other hybrid macromolecular materials involving hard particles and soft macromolecules.


Subject(s)
Nanocomposites , Polymers , Mechanical Phenomena , Motion
15.
J Chem Phys ; 156(11): 114901, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35317582

ABSTRACT

We combine simulation and Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to study the activated relaxation in monodisperse atomic and polymeric Weeks-Chandler-Andersen (WCA) liquids over a wide range of temperatures and densities in the supercooled regime under isochoric conditions. By employing novel crystal-avoiding simulations, metastable equilibrium dynamics is probed in the absence of complications associated with size polydispersity. Based on a highly accurate structural input from integral equation theory, ECNLE theory is found to describe well the simulated density and temperature dependences of the alpha relaxation time of atomic fluids using a single system-specific parameter, ac, that reflects the nonuniversal relative importance of local cage and collective elastic barriers. For polymer fluids, the explicit dynamical effect of local chain connectivity is modeled at the fundamental dynamic free energy trajectory level based on a different parameter, Nc, that quantifies the degree of intramolecular correlation of bonded segment activated barrier hopping. For the flexible chain model studied, a physically intuitive value of Nc ≈ 2 results in good agreement between simulation and theory. A direct comparison between atomic and polymeric systems reveals that chain connectivity can speed up activated segmental relaxation due to weakening of equilibrium packing correlations but can slow down relaxation due to local bonding constraints. The empirical thermodynamic scaling idea for the alpha time is found to work well at high densities or temperatures but fails when both density and temperature are low. The rich and subtle behaviors revealed from simulation for atomic and polymeric WCA fluids are all well captured by ECNLE theory.

16.
J Phys Chem B ; 125(44): 12353-12364, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34723527

ABSTRACT

We establish via an in-depth analysis of experimental data that the dimensionless compressibility (proportional to the dimensionless amplitude of long wavelength thermal density fluctuations) of one-component normal and supercooled liquids of chemically complex nonpolar and weakly polar molecules and polymers follows extremely well a surprisingly simple and general temperature dependence over an exceptionally wide range of pressures and temperatures. A theoretical basis for this behavior is shown to exist in the venerable van der Waals model and its more modern interpretations. Although associated hydrogen-bonding (and to a lesser degree strongly polar) liquids display modestly more complex behavior, rather simple temperature and pressure dependences are also discovered. A new approach to collapse the temperature- and pressure-dependent dimensionless compressibility data onto a master curve is formulated that differs from the empirical thermodynamic scaling approach. As a practical matter, we also find that the dimensionless compressibility scales well as an inverse power law with temperature with an exponent that is system dependent and decreases with pressure. At very high pressures and low temperatures, the thermal liquid behavior appears to approach (but not reach) a repulsion-dominated random close packing limit. All these findings are relevant to our recent theoretical work on the problem of activated relaxation and vitrification of supercooled molecular and polymeric liquids.

17.
J Chem Phys ; 155(5): 054505, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364324

ABSTRACT

We generalize the self-consistent cooperative hopping theory for a dilute spherical penetrant or tracer activated dynamics in dense metastable hard sphere fluids and glasses to address the effect of external stress, the consequences of which are systematically established as a function of matrix packing fraction and penetrant-to-matrix size ratio. All relaxation processes speed up under stress, but the difference between the penetrant and matrix hopping (alpha relaxation) times decreases significantly with stress corresponding to less time scale decoupling. A dynamic crossover occurs at a critical "slaving onset" stress beyond which the matrix activated hopping relaxation time controls the penetrant hopping time. This characteristic stress increases (decreases) exponentially with packing fraction (size ratio) and can be well below the absolute yield stress of the matrix. Below the slaving onset, the penetrant hopping time is predicted to vary exponentially with stress, differing from the power law dependence of the pure matrix alpha time due to system-specificity of the stress-induced changes in the penetrant local cage and elastic barriers. An exponential growth of the penetrant alpha relaxation time with size ratio under stress is predicted, and at a fixed matrix packing fraction, the exponential relation between penetrant hopping time and stress for different size ratios can be collapsed onto a master curve. Direct connections between the short- and long-time activated penetrant dynamics and between the penetrant (or matrix) alpha relaxation time and matrix thermodynamic dimensionless compressibility are also predicted. The presented results should be testable in future experiments and simulations.

18.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34326262

ABSTRACT

Molecular, polymeric, colloidal, and other classes of liquids can exhibit very large, spatially heterogeneous alterations of their dynamics and glass transition temperature when confined to nanoscale domains. Considerable progress has been made in understanding the related problem of near-interface relaxation and diffusion in thick films. However, the origin of "nanoconfinement effects" on the glassy dynamics of thin films, where gradients from different interfaces interact and genuine collective finite size effects may emerge, remains a longstanding open question. Here, we combine molecular dynamics simulations, probing 5 decades of relaxation, and the Elastically Cooperative Nonlinear Langevin Equation (ECNLE) theory, addressing 14 decades in timescale, to establish a microscopic and mechanistic understanding of the key features of altered dynamics in freestanding films spanning the full range from ultrathin to thick films. Simulations and theory are in qualitative and near-quantitative agreement without use of any adjustable parameters. For films of intermediate thickness, the dynamical behavior is well predicted to leading order using a simple linear superposition of thick-film exponential barrier gradients, including a remarkable suppression and flattening of various dynamical gradients in thin films. However, in sufficiently thin films the superposition approximation breaks down due to the emergence of genuine finite size confinement effects. ECNLE theory extended to treat thin films captures the phenomenology found in simulation, without invocation of any critical-like phenomena, on the basis of interface-nucleated gradients of local caging constraints, combined with interfacial and finite size-induced alterations of the collective elastic component of the structural relaxation process.

19.
J Colloid Interface Sci ; 601: 886-898, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34186277

ABSTRACT

We present an integrated experimental and theoretical study of the dynamics and rheology of self-crosslinked, slightly charged, temperature responsive soft poly(N-isopropylacrylamide) (pNIPAM) microgels over a wide range of concentration and temperature spanning the sharp change in particle size and intermolecular interactions across the lower critical solution temperature (LCST). Dramatic, non-monotonic changes in viscoelasticity are observed as a function of temperature, with distinct concentration dependence in the dense fluid, glassy, and soft-jammed regimes. Motivated by our experimental observations, we formulate a minimalistic model for the size dependence of a single microgel particle and the change of the interparticle interaction from purely repulsive to attractive upon heating. Using microscopic equilibrium and time-dependent statistical mechanical theories, theoretical predictions are quantitatively compared with experimental measurements of the shear modulus. Good agreement is found for the nonmonotonic temperature behavior that originates as a consequence of the competition between reduced microgel packing fraction and increasing interparticle attractions. Testable predictions are made for nonlinear rheological properties such as the yield stress and strain. To our knowledge, this is the first attempt to quantitatively understand in a unified manner the viscoelasticity of dense, temperature-responsive microgel suspensions spanning a wide range of temperatures and concentrations.


Subject(s)
Microgels , Particle Size , Polymers , Rheology , Suspensions
20.
ACS Nano ; 15(7): 11501-11513, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34128655

ABSTRACT

The addition of nanoparticles (NPs) to polymers is a powerful method to improve the mechanical and other properties of macromolecular materials. Such hybrid polymer-particle systems are also rich in fundamental soft matter physics. Among several factors contributing to mechanical reinforcement, a polymer-mediated NP network is considered to be the most important in polymer nanocomposites (PNCs). Here, we present an integrated experimental-theoretical study of the collective NP dynamics in model PNCs using X-ray photon correlation spectroscopy and microscopic statistical mechanics theory. Silica NPs dispersed in unentangled or entangled poly(2-vinylpyridine) matrices over a range of NP loadings are used. Static collective structure factors of the NP subsystems at temperatures above the bulk glass transition temperature reveal the formation of a network-like microstructure via polymer-mediated bridges at high NP loadings above the percolation threshold. The NP collective relaxation times are up to 3 orders of magnitude longer than the self-diffusion limit of isolated NPs and display a rich dependence with observation wavevector and NP loading. A mode-coupling theory dynamical analysis that incorporates the static polymer-mediated bridging structure and collective motions of NPs is performed. It captures well both the observed scattering wavevector and NP loading dependences of the collective NP dynamics in the unentangled polymer matrix, with modest quantitative deviations emerging for the entangled PNC samples. Additionally, we identify an unusual and weak temperature dependence of collective NP dynamics, in qualitative contrast with the mechanical response. Hence, the present study has revealed key aspects of the collective motions of NPs connected by polymer bridges in contact with a viscous adsorbing polymer medium and identifies some outstanding remaining challenges for the theoretical understanding of these complex soft materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...