Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(20): 8724-8735, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717952

ABSTRACT

Building and protecting soil organic carbon (SOC) are critical to agricultural productivity, soil health, and climate change mitigation. We aim to understand how mechanisms at the organo-mineral interfaces influence SOC persistence in three contrasting soils (Luvisol, Vertisol, and Calcisol) under long-term free air CO2 enrichment conditions. A continuous wheat-field pea-canola rotation was maintained. For the first time, we provided evidence to a novel notion that persistent SOC is molecularly simple even under elevated CO2 conditions. We found that the elevated CO2 condition did not change the total SOC content or C forms compared with the soils under ambient CO2 as identified by synchrotron-based soft X-ray analyses. Furthermore, synchrotron-based infrared microspectroscopy confirmed a two-dimensional microscale distribution of similar and less diverse C forms in intact microaggregates under long-term elevated CO2 conditions. Strong correlations between the distribution of C forms and O-H groups of clays can explain the steady state of the total SOC content. However, the correlations between C forms and clay minerals were weakened in the coarse-textured Calcisol under long-term elevated CO2. Our findings suggested that we should emphasize identifying management practices that increase the physical protection of SOC instead of increasing complexity of C. Such information is valuable in developing more accurate C prediction models under elevated CO2 conditions and shift our thinking in developing management practices for maintaining and building SOC for better soil fertility and future environmental sustainability.


Subject(s)
Carbon Dioxide , Carbon , Soil , Carbon Dioxide/chemistry , Soil/chemistry , Climate Change
2.
Nat Commun ; 14(1): 6609, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857604

ABSTRACT

Calcium (Ca) can contribute to soil organic carbon (SOC) persistence by mediating physico-chemical interactions between organic compounds and minerals. Yet, Ca is also crucial for microbial adhesion, potentially affecting colonization of plant and mineral surfaces. The importance of Ca as a mediator of microbe-mineral-organic matter interactions and resulting SOC transformation has been largely overlooked. We incubated 44Ca labeled soils with 13C15N labeled leaf litter to study how Ca affects microbial transformation of litter and formation of mineral associated organic matter. Here we show that Ca additions promote hyphae-forming bacteria, which often specialize in colonizing surfaces, and increase incorporation of litter into microbial biomass and carbon use efficiency by approximately 45% each. Ca additions reduce cumulative CO2 production by 4%, while promoting associations between minerals and microbial byproducts of plant litter. These findings expand the role of Ca in SOC persistence from solely a driver of physico-chemical reactions to a mediator of coupled abiotic-biotic cycling of SOC.


Subject(s)
Calcium , Soil , Soil/chemistry , Calcium/metabolism , Carbon/metabolism , Soil Microbiology , Plants/metabolism , Minerals/chemistry
3.
Nat Commun ; 13(1): 5177, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056025

ABSTRACT

The soil carbon (C) saturation concept suggests an upper limit to the storage of soil organic carbon (SOC). It is set by the mechanisms that protect soil organic matter from mineralization. Biochar has the capacity to protect new C, including rhizodeposits and microbial necromass. However, the decadal-scale mechanisms by which biochar influences the molecular diversity, spatial heterogeneity, and temporal changes in SOC persistence, remain unresolved. Here we show that the soil C storage ceiling of a Ferralsol under subtropical pasture was raised by a second application of Eucalyptus saligna biochar 8.2 years after the first application-the first application raised the soil C storage ceiling by 9.3 Mg new C ha-1 and the second application raised this by another 2.3 Mg new C ha-1. Linking direct visual evidence from one-, two-, and three-dimensional analyses with SOC quantification, we found high spatial heterogeneity of C functional groups that resulted in the retention of rhizodeposits and microbial necromass in microaggregates (53-250 µm) and the mineral fraction (<53 µm). Microbial C-use efficiency was concomitantly increased by lowering specific enzyme activities, contributing to the decreased mineralization of native SOC by 18%. We suggest that the SOC ceiling can be lifted using biochar in (sub)tropical grasslands globally.


Subject(s)
Carbon , Soil , Carbon Sequestration , Charcoal/chemistry , Soil/chemistry , Soil Microbiology
4.
Glob Chang Biol ; 28(15): 4589-4604, 2022 08.
Article in English | MEDLINE | ID: mdl-35543517

ABSTRACT

The structure of soil aggregates plays an important role for the turnover of particulate organic matter (POM) and vice versa. Analytical approaches usually do not disentangle the continuous re-organization of soil aggregates, caught between disintegration and assemblage. This led to a lack of understanding of the mechanistic relationship between aggregation and organic matter dynamics in soils. In this study, we took advantage of a process-based mechanistic model that describes the interaction between the dynamic (re-)arrangement of soil aggregates, based on dynamic image analysis data of wet-sieved aggregates, to analyze the turnover of POM, and simultaneous soil surface interactions in a spatially and temporally explicit way. Our novel modeling approach enabled us to unravel the temporal development of aggregate sizes, organic carbon (OC) turnover of POM, and surface coverage as affected by soil texture, POM input, and POM decomposition rate comparing a low and high clay soil (18% and 33% clay content). Our results reveal the importance of the dynamic re-arrangement of soil structure on POM-related turnover of OC in soils. Firstly, aggregation was largely determined by the POM input fostering aggregates through additional gluing joints outweighing soil texture at lower decomposition rate, whereas at higher decomposition rate, soil texture had a higher influence leading to larger aggregates in the high clay soil. Secondly, the POM storage increased with clay content, showing that surface interactions may delay the turnover of OC into CO2 . Thirdly, we observed a structural priming effect in which the increased input of POM induced increased structural re-arrangement stimulating the mineralization of old POM. This work highlights that the dynamic re-arrangement of soil aggregates has important implications for OC turnover and is driven by underlying surface interactions where temporary gluing spots stabilize larger aggregates.


Subject(s)
Carbon , Soil , Carbon/chemistry , Clay , Soil/chemistry
5.
Nat Commun ; 12(1): 4115, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226560

ABSTRACT

The largest terrestrial organic carbon pool, carbon in soils, is regulated by an intricate connection between plant carbon inputs, microbial activity, and the soil matrix. This is manifested by how microorganisms, the key players in transforming plant-derived carbon into soil organic carbon, are controlled by the physical arrangement of organic and inorganic soil particles. Here we conduct an incubation of isotopically labelled litter to study effects of soil structure on the fate of litter-derived organic matter. While microbial activity and fungal growth is enhanced in the coarser-textured soil, we show that occlusion of organic matter into aggregates and formation of organo-mineral associations occur concurrently on fresh litter surfaces regardless of soil structure. These two mechanisms-the two most prominent processes contributing to the persistence of organic matter-occur directly at plant-soil interfaces, where surfaces of litter constitute a nucleus in the build-up of soil carbon persistence. We extend the notion of plant litter, i.e., particulate organic matter, from solely an easily available and labile carbon substrate, to a functional component at which persistence of soil carbon is directly determined.


Subject(s)
Carbon/chemistry , Particulate Matter , Soil Microbiology , Soil/chemistry , Biomass , Fatty Acids , Fungi , Heterotrophic Processes , Minerals/chemistry , Plants
7.
Glob Chang Biol ; 24(4): 1637-1650, 2018 04.
Article in English | MEDLINE | ID: mdl-29223134

ABSTRACT

Global change contributes to the retreat of glaciers at unprecedented rates. The deglaciation facilitates biogeochemical processes on glacial deposits with initiating soil formation as an important driver of evolving ecosystems. The underlying mechanisms of soil formation and the association of soil organic matter (SOM) with mineral particles remain unclear, although further insights are critical to understand carbon sequestration in soils. We investigated the microspatial arrangement of SOM coatings at intact soil microaggregate structures during various stages of ecosystem development from 15 to >700 years after deglaciation in the proglacial environment of the Damma glacier (Switzerland). The functionally important clay-sized fraction (<2 µm) was separated into two density fractions with different amounts of organo-mineral associations: light (1.6-2.2 g/cm3 ) and heavy (>2.2 g/cm3 ). To quantify how SOM extends across the surface of mineral particles (coverage) and whether SOM coatings are distributed in fragmented or connected patterns (connectivity), we developed an image analysis protocol based on nanoscale secondary ion mass spectrometry (NanoSIMS). We classified SOM and mineral areas depending on the 16 O- , 12 C- , and 12 C14 N- distributions. With increasing time after glacial retreat, the microspatial coverage and connectivity of SOM increased rapidly. The rapid soil formation led to a succession of patchy distributed to more connected SOM coatings on soil microaggregates. The maximum coverage of 55% at >700 years suggests direct evidence for SOM sequestration being decoupled from the mineral surface, as it was not completely masked by SOM and retained its functionality as an ion exchange site. The chemical composition of SOM coatings showed a rapid change toward a higher CN:C ratio already at 75 years after glacial retreat, which was associated with microbial succession patterns reflecting high N assimilation. Our results demonstrate that rapid SOM sequestration drives the microspatial succession of SOM coatings in soils, a process that can stabilize SOM for the long term.


Subject(s)
Carbon/chemistry , Ice Cover , Soil/chemistry , Ecosystem , Minerals/chemistry , Switzerland , Time Factors
8.
Article in English | MEDLINE | ID: mdl-29119000

ABSTRACT

BACKGROUND: The industrial applications of cellulases are mostly limited by the costs associated with their production. Optimized production pathways are therefore desirable. Based on their enzyme inducing capacity, celluloses are commonly used in fermentation media. However, the influence of their physiochemical characteristics on the production process is not well understood. In this study, we examined how physical, structural and chemical properties of celluloses influence cellulase and hemicellulase production in an industrially-optimized and a non-engineered filamentous fungus: Trichoderma reesei RUT-C30 and Neurospora crassa. The performance was evaluated by quantifying gene induction, protein secretion and enzymatic activities. RESULTS: Among the three investigated substrates, the powdered cellulose was found to be the most impure, and the residual hemicellulosic content was efficiently perceived by the fungi. It was furthermore found to be the least crystalline substrate and consequently was the most readily digested cellulose in vitro. In vivo however, only RUT-C30 was able to take full advantage of these factors. When comparing carbon catabolite repressed and de-repressed strains of T. reesei and N. crassa, we found that cre1/cre-1 is at least partially responsible for this observation, but that the different wiring of the molecular signaling networks is also relevant. CONCLUSIONS: Our findings indicate that crystallinity and hemicellulose content are major determinants of performance. Moreover, the genetic background between WT and modified strains greatly affects the ability to utilize the cellulosic substrate. By highlighting key factors to consider when choosing the optimal cellulosic product for enzyme production, this study has relevance for the optimization of a critical step in the biotechnological (hemi-) cellulase production process.

9.
Sci Total Environ ; 574: 594-604, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27653558

ABSTRACT

New Swiss legislation obligates hydropower plant owners to reduce detrimental impacts on rivers ecosystems caused by hydropeaking. We used a case study in the Swiss Alps (hydropower company Kraftwerke Oberhasli AG) to develop an efficient and successful procedure for the ecological evaluation of such impacts, and to predict the effects of possible mitigation measures. We evaluated the following scenarios using 12 biotic and abiotic indicators: the pre-mitigation scenario (i.e. current state), the future scenario with increased turbine capacity but without mitigation measures, and future scenarios with increased turbine capacity and four alternative mitigation measures. The evaluation was based on representative hydrographs and quantitative or qualitative prediction of the indicators. Despite uncertainties in the ecological responses and the future operation mode of the hydropower plant, the procedure allowed the most appropriate mitigation measure to be identified. This measure combines a basin and a cavern at a total retention volume of 80,000m3, allowing for substantial dampening in the flow falling and ramping rates and in turn considerable reduction in stranding risk for juvenile trout and in macroinvertebrate drift. In general, this retention volume had the greatest predicted ecological benefit and can also, to some extent, compensate for possible modifications in the hydropower operation regime in the future, e.g. due to climate change, changes in the energy market, and changes in river morphology. Furthermore, it also allows for more specific seasonal regulations of retention volume during ecologically sensitive periods (e.g. fish spawning seasons). Overall experience gained from our case study is expected to support other hydropeaking mitigation projects.

10.
Sci Total Environ ; 574: 642-653, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27657990

ABSTRACT

A hydropeaking mitigation project on Valsura River in the Italians Alps is described. The project is of particular interest due to several aspects. First of all, the Valsura torrent has unique morphological braiding characteristics, which are unique in the reach of Adige valley between Merano and Bolzano, and has a good reproduction potential for fish, especially in the terminal stretch along a biotope before its confluence with Adige River. Moreover, the Valsura hydropower cascade, which overall consists of six high-head hydropower plants, has an exceptional economic importance for the local hydropower industry. Lastly, the last HPP on the cascade is a multipurpose plant, so that interesting interactions between hydropeaking mitigation, irrigation supply and peak energy production are considered. The project started from a hydrological and a limnological measuring campaign and from an energetic, hydraulic and legislative framework analysis. The ecological findings are combined into a deficit analysis, founding the basis for the definition of a hydrological target state, which points to achieve a good natural reproduction for brown trout in the hydropeaked stretch, fulfilling at the same time the human safety conditions. Finally, mitigation Measures are described that at the same time comply with the following manifold aspects: a. maintenance of the requested target limits for fish reproduction; b. maintenance of the water release for the agricultural irrigation; c. enhancement of the flexibility of the hydropower plant's operation; d. reduction of the risk for local population. The paper compares operational and constructive mitigation measures and shows that constructive hydropeaking mitigation measures, for the present case study, can combine the positive effects of ecological improvement with higher safety standards and more flexible energy production.

11.
Sci Total Environ ; 568: 1204-1212, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27267718

ABSTRACT

Hydropower plants are an important source of renewable energy. In the near future, high-head storage hydropower plants will gain further importance as a key element of large-scale electricity production systems. However, these power plants can cause hydropeaking which is characterized by intense unnatural discharge fluctuations in downstream river reaches. Consequences on environmental conditions in these sections are diverse and include changes to the hydrology, hydraulics and sediment regime on very short time scales. These altered conditions affect river ecosystems and biota, for instance due to drift and stranding of fishes and invertebrates. Several structural and operational measures exist to mitigate hydropeaking and the adverse effects on ecosystems, but estimating and predicting their ecological benefit remains challenging. We developed a conceptual framework to support the ecological evaluation of hydropeaking mitigation measures based on current mitigation projects in Switzerland and the scientific literature. We refined this framework with an international panel of hydropeaking experts. The framework is based on a set of indicators, which covers all hydrological phases of hydropeaking and the most important affected abiotic and biotic processes. Effects of mitigation measures on these indicators can be predicted quantitatively using prediction tools such as discharge scenarios and numerical habitat models. Our framework allows a comparison of hydropeaking effects among alternative mitigation measures, to the pre-mitigation situation, and to reference river sections. We further identified key issues that should be addressed to increase the efficiency of current and future projects. They include the spatial and temporal context of mitigation projects, the interactions of river morphology with hydropeaking effects, and the role of appropriate monitoring to evaluate the success of mitigation projects.

12.
Integr Environ Assess Manag ; 8(3): 462-72, 2012 Jul.
Article in English | MEDLINE | ID: mdl-21608112

ABSTRACT

As rehabilitation of previously channelized rivers becomes more common worldwide, flexible integrative modeling tools are needed to help predict the morphological, hydraulic, economic, and ecological consequences of the rehabilitation activities. Such predictions can provide the basis for planning and long-term management efforts that attempt to balance the diverse interests of river system stakeholders. We have previously reported on a variety of modeling methods and decision support concepts that can assist with various aspects of the river rehabilitation process. Here, we bring all of these tools together into a probability network model that links management actions, through morphological and hydraulic changes, to the ultimate ecological and economic consequences. Although our model uses a causal graph representation common to Bayesian networks, we do not limit ourselves to discrete-valued nodes or conditional Gaussian distributions as required by most Bayesian network implementations. This precludes us from carrying out easy probabilistic inference but gives us the advantages of functional and distributional flexibility and enhanced predictive accuracy, which we believe to be more important in most environmental management applications. We exemplify model application to a large, recently completed rehabilitation project in Switzerland.


Subject(s)
Conservation of Natural Resources/methods , Rivers , Animals , Bayes Theorem , Conservation of Natural Resources/economics , Conservation of Natural Resources/statistics & numerical data , Fishes
13.
Arzneimittelforschung ; 52(3): 168-74, 2002.
Article in English | MEDLINE | ID: mdl-11963643

ABSTRACT

The objective of the present study was to characterise the neuroprotective activity of the novel glycineB site NMDA (N-methyl-D-aspartate) receptor antagonist MRZ 2/576 (8-chloro-4-hydroxy-l-oxo- 1,2-dihydropyridazino[4,5-b]quinolin-5-oxide choline salt, CAS 202807-80-5) in a rodent model of focal cerebral ischaemia. Since the solubility of MRZ 2/576 at a physiological pH, is minimal and adequate concentrations can be achieved only at relatively high basic pH the in vivo use of the substance is substantially limited. Therefore, a special nanoparticle formulation was developed to provide means for lengthy i.v. administration of experimentally relevant doses within the physiological range of pH. Focal ischaemia of 75 min duration was induced in rats by a reversible occlusion of the middle cerebral artery (MCAo). MRZ 2/576 (18 mg/kg over 10 min followed by 18 mg/kg/h over 6 h) or placebo treatment was initiated immediately after onset of MCAo. Neurological deficit was evaluated daily for 3 consecutive days and then brain infarct analysis was performed. MRZ 2/576 significantly improved the neurological score at 24 h and 72 h post stroke (p < 0.05 vs. placebo). It also produced a 53.0% reduction of total infarct size, 60.4% of cortical and 42.3% of striatal infarction (p < 0.05 vs. placebo). Temporary drug-induced hypothermia and ataxia were observed during infusions. This leads to the conclusion that prolonged administration of the glycineB site antagonist MRZ 2/576 in form of the nanoparticle suspension ameliorates ischaemic damage induced by the transient MCAo in rats. The results suggest that nanoparticles hold promise as an effective strategy e.g. for substances with physico-chemical characteristics that otherwise would preclude them from pre-clinical development and/or clinical application.


Subject(s)
Ischemic Attack, Transient/drug therapy , Neuroprotective Agents/therapeutic use , Phthalazines/therapeutic use , Receptors, Glycine/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Cerebral Infarction/pathology , Hypothermia/chemically induced , Infusions, Intravenous , Ischemic Attack, Transient/pathology , Male , Microspheres , Neuroprotective Agents/administration & dosage , Particle Size , Phthalazines/administration & dosage , Rats , Rats, Sprague-Dawley , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...