Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 404(8): 2173-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22890539

ABSTRACT

Laser resonance ionization mass spectrometry (RIMS) represents one of the most sensitive and selective techniques for ultra trace determination of long-lived radioisotopes. The isotope (99g)Tc constitutes a specific candidate of high relevance concerning its environmental behavior as well as fundamental research applications. Based on the recent precision determination of the ionization potential of technetium by laser resonance ionization, refined resonant optical excitation pathways have been derived for analytical determination of ultra trace amounts of (99g)Tc by laser mass spectrometric approaches. The state of the art and the specifications of RIMS-based ultra trace determination for (99g)Tc, leading to a level of detection of ε ≈ 3 × 10(-4) atoms (3 µBq), are reported.

2.
Rev Sci Instrum ; 81(2): 02A515, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192370

ABSTRACT

The improvement in the performance of a conventional laser ion source in the laser ion source and trap (LIST) project is presented, which envisages installation of a repeller electrode and a linear Paul trap/ion guide structure. This approach promises highest isobaric purity and optimum temporal and spatial control of the radioactive ion beam produced at an online isotope separator facility. The functionality of the LIST was explored at the offline test separators of University of Mainz (UMz) and ISOLDE/CERN, using the UMz solid state laser system. Ionization efficiency and selectivity as well as time structure and transversal emittance of the produced ion beam was determined. Next step after complete characterization is the construction and installation of the radiation-hard final trap structure and its first online application.

SELECTION OF CITATIONS
SEARCH DETAIL
...