Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 50(65): 9168-71, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24993027

ABSTRACT

The preparation, full characterization and determination of the absolute configuration of diastereomerically pure disulfoxide derivatives of Tröger's base are described. A sulfinyl-lithium exchange followed by the reaction with electrophiles affords synthetically meaningful amounts of enantiomerically pure 4,10-disubstituted Tröger's base analogues without any erosion of the stereogenic information at the nitrogen centers.

2.
J Org Chem ; 78(13): 6763-8, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23734560

ABSTRACT

Simplified syntheses suited for large scale preparations of the two hypervalent iodine reagents 1 and 2 for electrophilic trifluoromethylation are reported. In both cases, the stoichiometric oxidants sodium metaperiodate and tert-butyl hypochlorite have been replaced by trichloroisocyanuric acid. Reagent 1 is accessible in a one-pot procedure from 2-iodobenzoic acid in 72% yield. Reagent 2 was prepared via fluoroiodane 11 in a considerably shorter reaction time and with no need of an accurate temperature control.


Subject(s)
Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Iodinated/chemical synthesis , Indicators and Reagents/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Iodinated/chemistry , Indicators and Reagents/chemistry , Methylation , Molecular Structure
3.
Chemistry ; 18(37): 11578-92, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22915378

ABSTRACT

The additive effects of amines were realized in the asymmetric hydrogenation of 2-phenylquinoxaline, and its derivatives, catalyzed by chiral cationic dinuclear triply halide-bridged iridium complexes [{Ir(H)[diphosphine]}(2)(µ-X)(3)]X (diphosphine = (S)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(S)-BINAP], (S)-5,5'-bis(diphenylphosphino)-4,4'-bi-1,3-benzodioxole [(S)-SEGPHOS], (S)-5,5'-bis(diphenylphosphino)-2,2,2',2'-tetrafluoro-4,4'-bi-1,3-benzodioxole [(S)-DIFLUORPHOS]; X = Cl, Br, I) to produce the corresponding 2-aryl-1,2,3,4-tetrahydroquinoxalines. The additive effects of amines were investigated by solution dynamics studies of iridium complexes in the presence of N-methyl-p-anisidine (MPA), which was determined to be the best amine additive for achievement of a high enantioselectivity of (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline, and by labeling experiments, which revealed a plausible mechanism comprised of two cycles. One catalytic cycle was less active and less enantioselective; it involved the substrate-coordinated mononuclear complex [IrHCl(2)(2-phenylquinoxaline){(S)-BINAP}], which afforded half-reduced product 3-phenyl-1,2-dihydroquinoxaline. A poorly enantioselective disproportionation of this half-reduced product afforded (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline. The other cycle involved a more active hydride-amide catalyst, derived from amine-coordinated mononuclear complex [IrCl(2)H(MPA){(S)-BINAP}], which functioned to reduce 2-phenylquinoxaline to (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline with high enantioselectivity. Based on the proposed mechanism, an Ir(I)-JOSIPHOS (JOSIPHOS = (R)-1-[(S(p))-2-(dicyclohexylphosphino)ferrocenylethyl]diphenylphosphine) catalyst in the presence of amine additive resulted in the highest enantioselectivity for the asymmetric hydrogenation of 2-phenylquinoxaline. Interestingly, the reaction rate and enantioselectivity were gradually increased during the reaction by a positive-feedback effect from the product amines.


Subject(s)
Amines/chemical synthesis , Iridium/chemistry , Organometallic Compounds/chemistry , Quinoxalines/chemistry , Amines/chemistry , Catalysis , Hydrogenation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...