Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brachytherapy ; 20(4): 922-935, 2021.
Article in English | MEDLINE | ID: mdl-33840635

ABSTRACT

PURPOSE: Renovation of the brachytherapy program at a leading cancer center utilized methods of the AAPM TG-100 report to objectively evaluate current clinical brachytherapy workflows and develop techniques for minimizing the risk of failures, increasing efficiency, and consequently providing opportunities for improved treatment quality. The TG-100 report guides evaluation of clinical workflows with recommendations for identifying potential failure modes (FM) and scoring them from the perspective of their occurrence frequency O, failure severity S, and inability to detect them D. The current study assessed the impact of differing methods to determine the risk priority number (RPN) beyond simple multiplication. METHODS AND MATERIALS: The clinical workflow for a complex brachytherapy procedure was evaluated by a team of 15 staff members, who identified discrete FM using alternate scoring scales than those presented in the TG-100 report. These scales were expanded over all clinically relevant possibilities with care to emphasize mitigation of natural bias for scoring near the median range as well as to enhance the overall scoring-system sensitivity. Based on staff member perceptions, a more realistic measure of risk was determined using weighted functions of their scores. RESULTS: This new method expanded the range of RPN possibilities by a factor of 86, improving evaluation and recognition of safe and efficient clinical workflows. Mean RPN values for each FM decreased by 44% when changing from the old to the new clinical workflow, as evaluated using the TG-100 method. This decreased by 66% when evaluated with the new method. As a measure of the total risk associated with an entire clinical workflow, the integral of RPN values increased by 15% and decreased by 31% with the TG-100 and new methods, respectively. CONCLUSIONS: This appears to be the first application of an alternate approach to the TG-100 method for evaluating the risk of clinical workflows. It exemplifies the risk analysis techniques necessary to rapidly evaluate simple clinical workflows appropriately.


Subject(s)
Brachytherapy , Brachytherapy/methods , Humans , Risk Assessment , Workflow
2.
Med Phys ; 47(8): 3586-3599, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32324289

ABSTRACT

PURPOSE: To develop and validate a Monte Carlo model of the Varian TrueBeam to study electron collimation using the existing photon multi-leaf collimators (pMLC), instead of conventional electron applicators and apertures. MATERIALS AND METHODS: A complete Monte Carlo model of the Varian TrueBeam was developed using Tool for particle simulation (TOPAS) (version 3.1.p3). Vendor-supplied information was used to model the treatment head components and the source parameters. A phase space plane was setup above the collimating jaws and captured particles were reused until a statistical uncertainty of 1% was achieved in the central axis. Electron energies 6, 9, 12, 16, and 20 MeV with a jaw-defined field of 20 × 20 cm2 at iso-center, pMLC-defined fields of 6.8 × 6.8 cm2 and 11.4 × 11.4 cm2 at 80 cm source-to-surface distance (SSD) and an applicator-defined field of 10 × 10 cm2 at iso-center were evaluated. All the measurements except the applicator-defined fields were measured using an ionization chamber in a water tank using 80 cm SSD. The dose difference, distance-to-agreement and gamma index were used to evaluate the agreement between the Monte Carlo calculations and measurements. Contributions of electron scattering off pMLC leaves and inter-leaf leakage on dose profiles were evaluated and compared with Monte Carlo calculations. Electron transport through a heterogeneous phantom was simulated and the resulting dose distributions were compared with film measurements. The validated Monte Carlo model was used to simulate several clinically motivated cases to demonstrate the benefit of pMLC-based electron delivery compared to applicator-based electron delivery. RESULTS: Calculated and measured percentage depth-dose (PDD) curves agree within 2% after normalization. The agreement between normalized percentage depth dose curves were evaluated using one-dimensional gamma analysis with a local tolerance of 2%/1 mm and the %points passing gamma criteria was 100% for all energies. For jaw-defined fields, calculated profiles agree with measurements with pass rates of >97% for 2%/2 mm gamma criteria. Calculated FWHM and penumbra width agree with measurements within 0.4 cm. For fields with tertiary collimation using an pMLC or applicator, the average gamma pass rate of compared profiles was 98% with 2%/2 mm gamma criteria. The profiles measured to evaluate the pMLC leaf scattering agreed with Monte Carlo calculations with an average gamma pass rate of 96.5% with 3%/2 mm gamma criteria. Measured dose profiles below the heterogenous phantom agreed well with calculated profiles and matched within 2.5% for most points. The calculated clinically applicable cases using TOPAS MC and Eclipse TPS for single enface electron beam, electron-photon mixed beam and a matched electron-electron beam exhibited a reasonable agreement in PDDs, profiles and dose volume histograms. CONCLUSION: We present a validation of a Monte Carlo model of Varian TrueBeam for pMLC-based electron delivery. Monte Carlo calculations agreed with measurements satisfying gamma criterion of 1%/1 mm for depth dose curves and 2%/1 mm for dose profiles. The simulation of clinically applicable cases demonstrated the clinical utility of pMLC-based electrons and the use of MC simulations for development of advanced radiation therapy techniques.


Subject(s)
Electrons , Radiometry , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
3.
Brachytherapy ; 19(3): 372-379, 2020.
Article in English | MEDLINE | ID: mdl-32249180

ABSTRACT

PURPOSE: While the noninvasive breast brachytherapy (NIBB) treatment procedure, known as AccuBoost, for breast cancer patients is well established, the treatment quality can be improved by the efficiency of the workflow delivery. A formalized approach evaluated the current workflow through failure modes and effects analysis and generated insight for developing new procedural workflow techniques to improve the clinical treatment process. METHODS AND MATERIALS: AccuBoost treatments were observed for several months while gathering details on the multidisciplinary workflow. A list of possible failure modes for each procedure step was generated and organized by timing within the treatment process. A team of medical professionals highlighted procedural steps that unnecessarily increased treatment time, as well as introduced quality deficiencies involving applicator setup, treatment planning, and quality control checks preceding brachytherapy delivery. Procedural improvements and their impact on the clinical workflow are discussed. RESULTS: The revised clinical workflow included the following key procedural enhancements. Prepatient arrival: Improvement of prearrival preparation requires advance completion of dose calculation documentation with patient-specific setup data. Patient arrival pretreatment: Physicists carry out dwell time calculations and check the plan, while the therapist concurrently performs several checks of the ensuing hardware configuration. TREATMENT: An electronic method to export the associated HDR brachytherapy paperwork to the electronic medical record system with electronic signatures and captured approvals was generated. Posttreatment: The therapist confirms the applicators were appropriately positioned, and treatment was delivered as expected. CONCLUSIONS: The procedural improvements reduced the overall treatment time, improved consistency across users, and eased performance of this special procedure for all participants.


Subject(s)
Brachytherapy/methods , Brachytherapy/standards , Breast Neoplasms/radiotherapy , Workflow , Female , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...