Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Bull ; 227(2): 146-60, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25411373

ABSTRACT

Restriction-site associated DNA sequencing (RAD) has emerged as a powerful marker system for studying genome-wide DNA polymorphisms using next-generation sequencing. A recent technical facilitation of RAD is double-digest RAD (ddRAD), which utilizes two restriction enzymes for library preparation. The more flexible and balanced ddRAD allows analysis of genomic loci in hundreds of individuals. However, in contrast to paired-end sequencing of traditional RAD libraries, PCR duplicates cannot be detected with ddRAD. This is a concern because duplicates can contribute substantially to read coverage data and erroneously inflate the proportion of homozygous loci (allele dropout). Allele dropout can bias population genetic parameter inference and complicate the detection of outlier loci under selection. Here we outline a simple and straightforward approach to detecting PCR duplicates from ddRAD libraries. Our approach introduces a degenerate base region (DBR, 12,288 unique combinations) in the sequencing adapter. We demonstrate the high efficiency and low rate of false positives in simulations. In addition, a pilot study was performed to test this approach on six aquatic invertebrates, sequenced on a HiSeq 2500 sequencer. The reads of the ddRAD libraries consisted of 33.48% PCR duplicates distributed on 19.40% of the loci. A disproportionate number of PCR duplicates were detected in only 4.66% of the loci. While this should not be a concern for general parameter inference, outlier loci detection in particular would be improved by the DBR technique. Given the easy and straightforward application of the technique in other RAD protocols as well, we suggest that DBR regions should generally be included in PCR-based RAD studies.


Subject(s)
Metagenomics/methods , Polymerase Chain Reaction/standards , Sequence Analysis, DNA/methods , Animals , DNA Restriction Enzymes/metabolism , Invertebrates/genetics , Polymorphism, Genetic/genetics
2.
PLoS Genet ; 8(11): e1003057, 2012.
Article in English | MEDLINE | ID: mdl-23166512

ABSTRACT

Variation in susceptibility to infectious disease often has a substantial genetic component in animal and plant populations. We have used genome-wide association studies (GWAS) in Drosophila melanogaster to identify the genetic basis of variation in susceptibility to viral infection. We found that there is substantially more genetic variation in susceptibility to two viruses that naturally infect D. melanogaster (DCV and DMelSV) than to two viruses isolated from other insects (FHV and DAffSV). Furthermore, this increased variation is caused by a small number of common polymorphisms that have a major effect on resistance and can individually explain up to 47% of the heritability in disease susceptibility. For two of these polymorphisms, it has previously been shown that they have been driven to a high frequency by natural selection. An advantage of GWAS in Drosophila is that the results can be confirmed experimentally. We verified that a gene called pastrel--which was previously not known to have an antiviral function--is associated with DCV-resistance by knocking down its expression by RNAi. Our data suggest that selection for resistance to infectious disease can increase genetic variation by increasing the frequency of major-effect alleles, and this has resulted in a simple genetic basis to variation in virus resistance.


Subject(s)
Biological Evolution , Disease Resistance/genetics , Drosophila melanogaster , Genome-Wide Association Study , Alleles , Animals , Chromosome Mapping , Dicistroviridae/genetics , Dicistroviridae/pathogenicity , Drosophila melanogaster/genetics , Drosophila melanogaster/virology , Genotype , Rhabdoviridae/genetics , Rhabdoviridae/pathogenicity , Selection, Genetic
3.
Ecol Evol ; 2(6): 1122-43, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22833789

ABSTRACT

In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...