Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 13(5): 3007-3019, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36910868

ABSTRACT

Complete understanding of catalytic cycles is required to advance the design of water oxidation catalysts, but it is difficult to attain, due to the complex factors governing their reactivity and stability. In this study, we investigate the regeneration and degradation pathways of the highly active biomimetic water oxidation catalyst [Mn3+ 2Mn4+ 2V4O17(OAc)3]3-, thereby completing its catalytic cycle. Beginning with the deactivated species [Mn3+ 4V4O17(OAc)2]4- left over after O2 evolution, we scrutinize a network of reaction intermediates belonging to two alternative water oxidation cycles. We find that catalyst regeneration to the activated species [Mn4+ 4V4O17(OAc)2(OH)(H2O)]- proceeds via oxidation of each Mn center, with one water ligand being bound during the first oxidation step and a second water ligand being bound and deprotonated during the final oxidation step. ΔΔG values for this last oxidation are consistent with previous experimental results, while regeneration within an alternative catalytic cycle was found to be thermodynamically unfavorable. Extensive in silico sampling of catalyst structures also revealed two degradation processes: cubane opening and ligand dissociation, both of which have low barriers at highly reduced states of the catalyst due to the presence of Jahn-Teller effects. These mechanistic insights are expected to spur the development of more efficient and stable Mn cubane water oxidation catalysts.

2.
Chem Sci ; 12(39): 12918-12927, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34745522

ABSTRACT

Despite their technological importance for water splitting, the reaction mechanisms of most water oxidation catalysts (WOCs) are poorly understood. This paper combines theoretical and experimental methods to reveal mechanistic insights into the reactivity of the highly active molecular manganese vanadium oxide WOC [Mn4V4O17(OAc)3]3- in aqueous acetonitrile solutions. Using density functional theory together with electrochemistry and IR-spectroscopy, we propose a sequential three-step activation mechanism including a one-electron oxidation of the catalyst from [Mn2 3+Mn2 4+] to [Mn3+Mn3 4+], acetate-to-water ligand exchange, and a second one-electron oxidation from [Mn3+Mn3 4+] to [Mn4 4+]. Analysis of several plausible ligand exchange pathways shows that nucleophilic attack of water molecules along the Jahn-Teller axis of the Mn3+ centers leads to significantly lower activation barriers compared with attack at Mn4+ centers. Deprotonation of one water ligand by the leaving acetate group leads to the formation of the activated species [Mn4V4O17(OAc)2(H2O)(OH)]- featuring one H2O and one OH ligand. Redox potentials based on the computed intermediates are in excellent agreement with electrochemical measurements at various solvent compositions. This intricate interplay between redox chemistry and ligand exchange controls the formation of the catalytically active species. These results provide key reactivity information essential to further study bio-inspired molecular WOCs and solid-state manganese oxide catalysts.

3.
ACS Catal ; 11(21): 13320-13329, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34777908

ABSTRACT

Understanding how water oxidation to molecular oxygen proceeds in molecular metal-oxo catalysts is a challenging endeavor due to their structural complexity. In this report, we unravel the water oxidation mechanism of the highly active water oxidation catalyst [Mn4V4O17(OAc)3]3-, a polyoxometalate catalyst with a [Mn4O4]6+ cubane core reminiscent of the natural oxygen-evolving complex. Starting from the activated species [Mn4 4+V4O17(OAc)2(H2O)(OH)]1-, we scrutinized multiple pathways to find that water oxidation proceeds via a sequential proton-coupled electron transfer (PCET), O-O bond formation, another PCET, an intramolecular electron transfer, and another PCET resulting in O2 evolution, with a predicted thermodynamic overpotential of 0.71 V. An in-depth investigation of the O-O bond formation process revealed an essential interplay between redox isomerism and Jahn-Teller effects, responsible for enhancing reactivity in the catalytic cycle. This is achieved by redistributing electrons between metal centers and weakening relevant bonds through Jahn-Teller distortions, introducing flexibility to the otherwise rigid cubane core of the catalyst. These mechanistic insights are expected to advance the design of efficient bioinspired Mn cubane water-splitting catalysts.

4.
Molecules ; 25(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906045

ABSTRACT

This review describes major advances in the use of functionalized molecular metal oxides (polyoxometalates, POMs) as water oxidation catalysts under electrochemical conditions. The fundamentals of POM-based water oxidation are described, together with a brief overview of general approaches to designing POM water oxidation catalysts. Next, the use of POMs for homogeneous, solution-phase water oxidation is described together with a summary of theoretical studies shedding light on the POM-WOC mechanism. This is followed by a discussion of heterogenization of POMs on electrically conductive substrates for technologically more relevant application studies. The stability of POM water oxidation catalysts is discussed, using select examples where detailed data is already available. The review finishes with an outlook on future perspectives and emerging themes in electrocatalytic polyoxometalate-based water oxidation research.


Subject(s)
Oxides/chemistry , Tungsten Compounds/chemistry , Water/chemistry , Catalysis , Electrodes , Electrolytes/chemistry , Electrons , Ligands , Metals/chemistry , Oxidation-Reduction , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...