Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Anal Chem ; 93(30): 10519-10527, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34282898

ABSTRACT

The last decade has seen widespread adoption of triple quadrupole-based inductively coupled plasma-tandem mass spectrometry (ICPMS/MS) technique using a collision/reaction cell in combination with a precell bandpass mass analyzer to measure isotopes otherwise masked by spectral interferences. High-precision isotope ratio analysis containing such isotopes would benefit from a similar capability on a multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) platform, but using a quadrupole-based precell mass analyzer for MC-ICPMS/MS has several limitations. To overcome these limitations, we developed a novel precell mass analyzer for MC-ICPMS/MS using sector field technology. The new precell mass analyzer, comprising two Wien filters and a selection aperture, and a hexapole collision/reaction cell were integrated together in a single module and added to the commercially available Thermo Scientific Neptune XT MC-ICPMS to create a prototype MC-ICPMS/MS we named Vienna. Vienna was proven to retain the same performance of the base MC-ICPMS in terms of sensitivity, accuracy, and precision. Using the Vienna mass filter to eliminate Ar-based species, the abundance sensitivity achievable was equivalent to TIMS at mass 237.05, which was used to accurately determine the low 236U/238U isotope ratio of the uranium reference material IRMM184 (certified value, 1.2446 × 10-7). The performance of Vienna was then tested for a variety of geoscience applications that were expected to benefit from MC-ICPMS/MS technique, including Ca, K, Si, and in situ Rb/Sr dating by laser ablation.


Subject(s)
Isotopes , Mass Spectrometry , Spectrum Analysis
2.
J Anal At Spectrom ; 36(5): 917-931, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34092881

ABSTRACT

We document the utility for in situ Rb-Sr dating of a one-of-a-kind tribrid mass spectrometer, 'Proteus', coupled to a UV laser ablation system. Proteus combines quadrupole mass-filter, collision cell and sector magnet with a multicollection inductively-coupled plasma mass spectrometer (CC-MC-ICPMS/MS). Compared to commercial, single collector, tribrid inductively-coupled plasma mass spectrometers (CC-ICPMS/MS) Proteus has enhanced ion transmission and offers simultaneous collection of all Sr isotopes using an array of Faraday cups. These features yield improved precision in measured 87Sr/86Sr ratios, for a given mass of Sr analysed, approximately a factor of 25 in comparison to the Thermo Scientific™ iCAP TQ™ operated under similar conditions. Using SF6 as a reaction gas on Proteus, measurements of Rb-doped NIST SRM (standard reference material) 987 solutions, with Rb/Sr ratios from 0.01-100, yield 87Sr/86Sr that are indistinguishable from un-doped NIST SRM 987, demonstrating quantitative 'chemical resolution' of Rb from Sr. We highlight the importance of mass-filtering before the collision cell for laser ablation 87Sr/86Sr analysis, using an in-house feldspar standard and a range of glass reference materials. By transmitting only those ions with mass-to-charge ratios 82-92 u/e into the collision cell, we achieve accurate 87Sr/86Sr measurements without any corrections for atomic or polyatomic isobaric interferences. Without the pre-cell mass-filtering, measured in situ 87Sr/86Sr ratios are inaccurate. Combining in situ measurements of Rb/Sr and radiogenic Sr isotope ratios we obtain mineral isochrons. We utilise a sample from the well-dated Dartmoor granite (285 ± 1 Ma) as a calibrant for our in situ ages and, using the same conditions, produce accurate Rb-Sr isochron ages for samples of the Fish Canyon tuff (28 ± 2 Ma) and Shap granite pluton (397 ± 1 Ma). Analysing the same Dartmoor granite sample using identical laser conditions and number of spot analyses using the Thermo Scientific™ iCAP TQ™ yielded an isochron slope 5× less precise than Proteus. We use an uncertainty model to illustrate the advantage of using Proteus over single collector CC-ICPMS/MS for in situ Rb-Sr dating. The results of this model show that the improvement is most marked for samples that have low Rb/Sr (<10) or are young (<100 Ma). We also report the first example of an in situ, internal Rb-Sr isochron from a single potassium-feldspar grain. Using a sample from the Shap granite, we obtained accurate age and initial 87Sr/86Sr with 95% confidence intervals of ±1.5% and ±0.03% respectively. Such capabilities offer new opportunities in geochronological studies.

3.
Rapid Commun Mass Spectrom ; 33(17): 1363-1380, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31063233

ABSTRACT

RATIONALE: Determination of δ17 O values directly from CO2 with traditional gas source isotope ratio mass spectrometry is not possible due to isobaric interference of 13 C16 O16 O on 12 C17 O16 O. The methods developed so far use either chemical conversion or isotope equilibration to determine the δ17 O value of CO2 . In addition, δ13 C measurements require correction for the interference from 12 C17 O16 O on 13 C16 O16 O since it is not possible to resolve the two isotopologues. METHODS: We present a technique to determine the δ17 O, δ18 O and δ13 C values of CO2 from the fragment ions that are formed upon electron ionization in the ion source of the Thermo Scientific 253 Ultra high-resolution isotope ratio mass spectrometer (hereafter 253 Ultra). The new technique is compared with the CO2 -O2 exchange method and the 17 O-correction algorithm for δ17 O and δ13 C values, respectively. RESULTS: The scale contractions for δ13 C and δ18 O values are slightly larger for fragment ion measurements than for molecular ion measurements. The δ17 O and Δ17 O values of CO2 can be measured on the 17 O+ fragment with an internal error that is a factor 1-2 above the counting statistics limit. The ultimate precision depends on the signal intensity and on the total time that the 17 O+ beam is monitored; a precision of 14 ppm (parts per million) (standard error of the mean) was achieved in 20 hours at the University of Göttingen. The Δ17 O measurements with the O-fragment method agree with the CO2 -O2 exchange method over a range of Δ17 O values of -0.3 to +0.7‰. CONCLUSIONS: Isotope measurements on atom fragment ions of CO2 can be used as an alternative method to determine the carbon and oxygen isotopic composition of CO2 without chemical processing or corrections for mass interferences.

4.
Rapid Commun Mass Spectrom ; 32(9): 730-738, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29446506

ABSTRACT

RATIONALE: We report modifications to compound-specific isotope analyses (CSIA) to enable high-precision isotopic analyses of picomoles of carbon for intact organic molecules. This sample size is two orders of magnitude below the amounts required for commercial systems. The greatly enhanced sensitivity of this system expands molecular isotope studies and applications previously prohibited by low concentrations and small samples. METHODS: We utilize the resolving power and low volumetric flow rates of narrow-bore capillary gas chromatography to improve sample transfer efficiency while maintaining narrow peak widths. Post-column peak broadening is minimized using a micro-fluidic valve for solvent diversion, capillary combustion reactor, narrow-bore capillary transfer lines, and cryogenic water trap. The mass spectrometer was fitted with collector amplifiers configured to 25 ms response times and a data logger board with firmware capable of rapid data acquisition. Carbon dioxide gas was introduced directly into the ion source to evaluate the dynamic range of the system and accuracy and precision of carbon isotope ratio (δ13 C value) measurements. The accuracy and precision for combusted compounds were evaluated using a suite of n-alkanes. RESULTS: For ≥30 pmol carbon introduced directly into the ion source, the mean difference between the measured and expected δ13 C values is 0.03‰ (1σ, n = 57) and the standard deviation of replicate measurements is 0.11‰ (1σ). The CO2 peak widths generated by the exponential dilution flask were 250 ms and the peak widths produced by combusting n-alkanes were ca 500 ms, less than 25% the width of conventional gas chromatography peaks. For a mixture of 15 n-alkanes (n-C16 to n-C30 ), the accuracy is 0.3‰ (1σ) and precision is 0.9‰ (1σ) for replicate δ13 C measurements with 100 pmol carbon per compound on column. CONCLUSIONS: The pico-CSIA method described here offers improved chromatographic resolution and reduces sample size requirements by two orders of magnitude. These advances significantly broaden the available analytical window for CSIA in research areas frequently hindered by sample size limitations, such as forensics, paleoclimate, astrobiology, and biochemistry.

5.
Rapid Commun Mass Spectrom ; 31(12): 1057-1066, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28402589

ABSTRACT

RATIONALE: Clumped isotope analyses (Δ47 ) of carbonates by dual inlet (DI) mass spectrometry require long integration times to reach the necessary high precision due to the low abundance of the rare isotopologue 13 C18 O16 O. Traditional DI protocols reach this only with large amounts of sample and/or a large number of replicates as a large portion of the analyte gas is wasted. We tested an improved analytical workflow that significantly reduces the sample sizes and total analysis time per sample while preserving precision and accuracy. METHODS: We implemented the LIDI (long-integration dual-inlet) protocol to measure carbonates in micro-volume mode using a Kiel IV carbonate device coupled to a Thermo Scientific 253 Plus isotope ratio mass spectrometer without the new 1013 ohm amplifier technology. The LIDI protocol includes a single measurement of the sample gas (600 s integration) followed by a single measurement of the working gas (WG) with the same integration time. RESULTS: The Δ47 measurements of four calcite standards over a period of 5 weeks demonstrate excellent long-term stability with a standard deviation of ±0.021 to ±0.025 ‰ for the final values of the individual aliquots. The Δ47 analyses of a coral, four foraminifera and a calcite precipitated in the laboratory demonstrate that 14 replicates of 90 to 120 µg are sufficient to achieve an external precision of ±0.007 ‰ (1SE) or of ±0.013 ‰ at the 95% confidence level. CONCLUSIONS: This study demonstrates that by using a Kiel IV-253 Plus system with LIDI it is possible to achieve the same analytical precision as conventional DI measurements with at least a factor of 40 less sample material. With the new 1013 ohm resistor technology there is the potential to reduce the required sample material even more. This opens new avenues of research in paleoceanography, paleoclimatology, low-temperature diagenesis and other currently sample size limited applications. Copyright © 2017 John Wiley & Sons, Ltd.

SELECTION OF CITATIONS
SEARCH DETAIL
...