Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Adv ; 5(5): 1952-1959, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38444932

ABSTRACT

Due to their high ionic conductivity, lithium-ion conducting argyrodites show promise as solid electrolytes for solid-state batteries. Aliovalent substitution is an effective technique to enhance the transport properties of Li6PS5Br, where aliovalent Si substitution triples ionic conductivity. However, the origin of this experimentally observed increase is not fully understood. Our density functional theory (DFT) study reveals that Si4+ substitution increases Li diffusion by activating Li occupancy in the T4 sites. Redistribution of Li-ions within the lattice results in a more uniform distribution of Li around the T4 and neighboring T5 sites, flattening the energy landscape for diffusion. Since the T4 site is positioned in the intercage jump pathway, an increase in the intercage jump rate is found, which is directly related to the macroscopic diffusion and bulk conductivity. Analysis of neutron diffraction experiments confirms partial T4 site occupancy, in agreement with the computational findings. Understanding the aliovalent substitution effect on interstitials is crucial for improving solid electrolyte ionic conductivity and advancing solid-state battery performance.

2.
JACS Au ; 1(9): 1488-1496, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34604857

ABSTRACT

Solid-state batteries have significant advantages over conventional liquid batteries, providing improved safety, design freedom, and potentially reaching higher power and energy densities. The major obstacle in the commercial realization of solid-state batteries is the high resistance at the interfaces. To overcome this bottleneck, it is essential to achieve an in-depth fundamental understanding of the crucial electrochemical processes at the interface. Conventional electrochemical stability calculations for solid electrolytes, determining the formation energy toward the energetically favorable decomposition products, often underestimate the stability window because kinetics are not included. In this work, we introduce a computational scheme that takes the redox-activity of the solid electrolytes into account in calculating the electrochemical stability, and it in many cases appears to dictate the electrochemical stability. This methodology is applied to different chemical and structural classes of solid electrolytes, exhibiting excellent agreement with experimentally observed electrochemical stability. In contrast with current perception, the results suggest that the electrochemical stability of solid electrolytes is not always determined by the decomposition products but often originates from the intrinsic stability of the material itself. The processes occurring outside the stability window can lead toward phase separation or solid solution depending on the reaction mechanism of the material. These newly gained insights provide better predictions of the practical voltage ranges and structural stabilities of solid electrolytes, guiding solid-state batteries toward better interfaces and material design.

3.
Nat Mater ; 19(4): 428-435, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31932670

ABSTRACT

All-solid-state Li-ion batteries promise safer electrochemical energy storage with larger volumetric and gravimetric energy densities. A major concern is the limited electrochemical stability of solid electrolytes and related detrimental electrochemical reactions, especially because of our restricted understanding. Here we demonstrate for the argyrodite-, garnet- and NASICON-type solid electrolytes that the favourable decomposition pathway is indirect rather than direct, via (de)lithiated states of the solid electrolyte, into the thermodynamically stable decomposition products. The consequence is that the electrochemical stability window of the solid electrolyte is notably larger than predicted for direct decomposition, rationalizing the observed stability window. The observed argyrodite metastable (de)lithiated solid electrolyte phases contribute to the (ir)reversible cycling capacity of all-solid-state batteries, in addition to the contribution of the decomposition products, comprehensively explaining solid electrolyte redox activity. The fundamental nature of the proposed mechanism suggests this is a key aspect for solid electrolytes in general, guiding interface and material design for all-solid-state batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...