Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 200: 116090, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316101

ABSTRACT

Microplastics have accumulated in the environment since plastic production began, with present-day observations that range from marine trenches to mountains. However, research on microplastics has only recently begun so it is unclear how they have changed over time in many oceanic regions. Our study addressed this gap by quantifying the temporal and spatial dynamics of microplastics in two deep-water regions of the Gulf of Mexico (GOM). We isolated agglutinated foraminifera from sediment cores and assessed microplastics that were incorporated into their tests. Our results indicated that microplastics were incorporated by agglutinated foraminifera after plastic production began. Microplastics were higher at deep-water sites and closer to the Mississippi River. This study confirms the presence of microplastic incorporation into agglutinated foraminifera tests and investigates microplastics in deep-water sediments in the GOM. Additional work is needed to fully identify the distribution of microplastics across the GOM and other oceanic basins.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Microplastics , Plastics , Environmental Monitoring/methods , Gulf of Mexico , Water Pollutants, Chemical/analysis , Geologic Sediments , Water
2.
PLoS One ; 15(4): e0231678, 2020.
Article in English | MEDLINE | ID: mdl-32294128

ABSTRACT

The southern Gulf of Mexico (sGoM) is home to an extensive oil recovery and development infrastructure. In addition, the basin harbors sites of submarine hydrocarbon seepage and receives terrestrial inputs from bordering rivers. We used stable carbon, nitrogen, and radiocarbon analyses of bulk sediment organic matter to define the current baseline isoscapes of surface sediments in the sGoM and determined which factors might influence them. These baseline surface isoscapes will be useful for accessing future environmental impacts. We also examined the region for influence of hydrocarbon deposition in the sedimentary record that might be associated with hydrocarbon recovery, spillage and seepage, as was found in the northern Gulf of Mexico (nGoM) following the Deepwater Horizon (DWH) oil spill in 2010. In 1979, the sGoM experienced a major oil spill, Ixtoc 1. Surface sediment δ13C values ranged from -22.4‰ to -19.9‰, while Δ14C values ranged from -337.1‰ to -69.2‰. Sediment δ15N values ranged from 2.8‰ to 7.2‰, while the %C on a carbonate-free basis ranged in value of 0.65% to 3.89% and %N ranged in value of 0.09% to 0.49%. Spatial trends for δ13C and Δ14C were driven by water depth and distance from the coastline, while spatial trends for δ15N were driven by location (latitude and longitude). Location and distance from the coastline were significantly correlated with %C and %N. At depth in two of twenty (10%) core profiles, we found negative δ13C and Δ14C excursions from baseline values in bulk sedimentary organic material, consistent with either oil-residue deposition or terrestrial inputs, but likely the latter. We then used 210Pb dating on those two profiles to determine the time in which the excursion-containing horizons were deposited. Despite the large spill in 1979, no evidence of hydrocarbon residue remained in the sediments from this specific time period.


Subject(s)
Carbon Radioisotopes/analysis , Environmental Monitoring/statistics & numerical data , Geologic Sediments/analysis , Radiometric Dating/statistics & numerical data , Carbon Isotopes/analysis , Gulf of Mexico , Lead Radioisotopes/analysis , Nitrogen/analysis
3.
Environ Pollut ; 237: 424-429, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29502005

ABSTRACT

Following the Deepwater Horizon (DWH) event in 2010, hydrocarbons were deposited on the continental slope in the northeastern Gulf of Mexico through marine oil snow sedimentation and flocculent accumulation (MOSSFA). The objective of this study was to test the hypothesis that benthic foraminiferal δ13C would record this depositional event. From December 2010 to August 2014, a time-series of sediment cores was collected at two impacted sites and one control site in the northeastern Gulf of Mexico. Short-lived radioisotopes (210Pb and 234Th) were employed to establish the pre-DWH, DWH, and post-DWH intervals. Benthic foraminifera (Cibicidoides spp. and Uvigerina spp.) were isolated from these intervals for δ13C measurement. A modest (0.2-0.4‰), but persistent δ13C depletion in the DWH intervals of impacted sites was observed over a two-year period. This difference was significantly beyond the pre-DWH (background) variability and demonstrated that benthic foraminiferal calcite recorded the depositional event. The longevity of the depletion in the δ13C record suggested that benthic foraminifera may have recorded the change in organic matter caused by MOSSFA from 2010 to 2012. These findings have implications for assessing the subsurface spatial distribution of the DWH MOSSFA event.


Subject(s)
Calcium Carbonate/analysis , Carbon/analysis , Environmental Monitoring/methods , Foraminifera/chemistry , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Flocculation , Geologic Sediments , Gulf of Mexico , Hydrocarbons/analysis , Lead Radioisotopes , Snow , Thorium
4.
J Vis Exp ; (114)2016 08 17.
Article in English | MEDLINE | ID: mdl-27585268

ABSTRACT

Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.


Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Water Pollutants, Chemical/isolation & purification , Geologic Sediments
5.
PLoS One ; 10(7): e0132341, 2015.
Article in English | MEDLINE | ID: mdl-26172639

ABSTRACT

The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess (234)Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4-5 month period. Further, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess (234)Th depths, accumulation rates, and (234)Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.


Subject(s)
Geologic Sediments/chemistry , Geologic Sediments/microbiology , Petroleum Pollution/adverse effects , Foraminifera , Gulf of Mexico , Half-Life , Radioisotopes/analysis , Radioisotopes/chemistry
7.
PLoS One ; 10(5): e0128371, 2015.
Article in English | MEDLINE | ID: mdl-26020923

ABSTRACT

The Deepwater Horizon (DWH) spill released 4.9 million barrels of oil into the Gulf of Mexico (GoM) over 87 days. Sediment and water sampling efforts were concentrated SW of the DWH and in coastal areas. Here we present geochemistry data from sediment cores collected in the aftermath of the DWH event from 1000-1500 m water depth in the DeSoto Canyon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm intervals) in order to evaluate the concentration, composition and input of hydrocarbons to the seafloor. Specifically, we analyzed total organic carbon (TOC), aliphatic, polycyclic aromatic hydrocarbon (PAHs), and biomarker (hopanes, steranes, diasteranes) compounds to elucidate possible sources and transport pathways for deposition of hydrocarbons. Results showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to 2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event, both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1) sinking of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended particulate material), and 2) advective transport and direct contact of the deep plume with the continental slope surface sediments between 1000-1200 m. Our findings underline the complexity of the depositional event observed in the aftermath of the DWH event in terms of multiple sources, variable concentrations, and spatial (depth-related) variability in the DeSoto Canyon, NE of the DWH wellhead.


Subject(s)
Carbon/analysis , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Triterpenes/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments , Gulf of Mexico , Seawater/chemistry
8.
PLoS One ; 10(3): e0120565, 2015.
Article in English | MEDLINE | ID: mdl-25785988

ABSTRACT

Sediment cores were collected from three sites (1000-1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (²¹°Pb, ²³4Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80-93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2-3 times background) in PAH's, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale.


Subject(s)
Foraminifera/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Biodiversity , Foraminifera/physiology , Geologic Sediments/chemistry , Gulf of Mexico , Lead Radioisotopes , Oxidation-Reduction , Population Dynamics/statistics & numerical data , Seawater/chemistry , Thorium
SELECTION OF CITATIONS
SEARCH DETAIL
...