Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525491

ABSTRACT

Copper nitride nanowire arrays were synthesized by an ammonolysis reaction of copper oxide precursors grown on copper surfaces in an ammonia solution. The starting Cu films were deposited on a silicon substrate using two different methods: thermal evaporation (30 nm thickness) and electroplating (2 µm thickness). The grown CuO or CuO/Cu(OH)2 architectures were studied in regard to morphology and size, using electron microscopy methods (SEM, TEM). The final shape and composition of the structures were mostly affected by the concentration of the ammonia solution and time of the immersion. Needle-shaped 2-3 µm long nanostructures were formed from the electrodeposited copper films placed in a 0.033 M NH3 solution for 48 h, whereas for the copper films obtained by physical vapor deposition (PVD), well-aligned nano-needles were obtained after 3 h. The phase composition of the films was studied by X-ray diffraction (XRD) and selected area electron diffraction (SAED) analysis, indicating a presence of CuO and Cu(OH)2, as well as Cu residues. Therefore, in order to obtain a pure oxide film, the samples were thermally treated at 120-180 °C, after which the morphology of the structures remained unchanged. In the final stage of this study, Cu3N nanostructures were obtained by an ammonolysis reaction at 310 °C and studied by SEM, TEM, XRD, and spectroscopic methods. The fabricated PVD-derived coatings were also analyzed using a spectroscopic ellipsometry method, in order to calculate dielectric function, band gap and film thickness.

2.
Materials (Basel) ; 13(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512766

ABSTRACT

Zinc oxide nanoparticles were prepared from Zn5(CO3)2(OH)6 precursor, capped with poly(vinylpyrrolidone) (PVP), and annealed at 600 °C. The obtained powders were characterized by a powder X-ray diffraction (PXD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), Raman spectroscopy, infrared spectroscopy (IR), thermal analysis (TGA/DTA), and third-order nonlinear (NL) optical measurement. Morphological evaluation by TEM and SEM measurements indicated that the precursor micro-particles are ball-shaped structures composed of plates with a thickness of approximately 10 nm. ZnO thin films, as well as ZnO/polymer multilayer layouts, were obtained by wet chemical methods (spin- and dip-coating). Surface topography and morphology of the obtained films were studied by SEM and AFM microscopy. Films with uniformly distributed ZnO plates, due to the erosion of primary micro-particles were formed. The fabricated specimens were also analyzed using a spectroscopic ellipsometry in order to calculate dielectric function and film thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...