Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 15: 163, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26272448

ABSTRACT

BACKGROUND: Chlamydia spp. are believed to use a conserved virulence factor called type III secretion (T3S) to facilitate the delivery of effector proteins from the bacterial pathogen to the host cell. Important early effector proteins of the type III secretion system (T3SS) are a class of proteins called the translocators. The translocator proteins insert into the host cell membrane to form a pore, allowing the injectisome to dock onto the host cell to facilitate translocation of effectors. CopB is a predicted hydrophobic translocator protein within the chlamydial T3SS. RESULTS: In this study, we identified a novel interaction between the hydrophobic translocator, CopB, and the putative filament protein, CdsF. Furthermore, we identified a conserved PxLxxP motif in CopB (amino acid residues 166-171), which is required for interaction with its cognate chaperone, LcrH_1. Using a synthetic peptide derived from the chaperone binding motif of CopB, we were able to block the LcrH_1 interaction with either CopB or CopD; this CopB peptide was capable of inhibiting C. pneumoniae infection of HeLa cells at micromolar concentrations. An antibody raised against the N-terminus of CopB was able to inhibit C. pneumoniae infection of HeLa cells. CONCLUSION: The inhibition of the LcrH_1:CopB interaction with a cognate peptide and subsequent inhibition of host cell infection provides strong evidence that T3S is an essential virulence factor for chlamydial infection and pathogenesis. Together, these results support that CopB plays the role of a hydrophobic translocator.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Chlamydophila pneumoniae/metabolism , Membrane Transport Proteins/metabolism , Type III Secretion Systems , Virulence Factors/metabolism , Amino Acid Motifs , Bacterial Proteins/metabolism , Binding Sites , Epithelial Cells/microbiology , HeLa Cells , Host-Pathogen Interactions , Humans , Molecular Chaperones/metabolism , Protein Binding , Protein Interaction Mapping
2.
J Bacteriol ; 197(11): 1893-905, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25802299

ABSTRACT

UNLABELLED: Although Staphylococcus aureus is exposed to antimicrobial fatty acids on the skin, in nasal secretions, and in abscesses, a specific mechanism of inducible resistance to this important facet of innate immunity has not been identified. Here, we have sequenced the genome of S. aureus USA300 variants selected for their ability to grow at an elevated concentration of linoleic acid. The fatty acid-resistant clone FAR7 had a single nucleotide polymorphism resulting in an H121Y substitution in an uncharacterized transcriptional regulator belonging to the AcrR family, which was divergently transcribed from a gene encoding a member of the resistance-nodulation-division superfamily of multidrug efflux pumps. We named these genes farR and farE, for regulator and effector of fatty acid resistance, respectively. Several lines of evidence indicated that FarE promotes efflux of antimicrobial fatty acids and is regulated by FarR. First, expression of farE was strongly induced by arachidonic and linoleic acids in an farR-dependent manner. Second, an H121Y substitution in FarR resulted in increased expression of farE and was alone sufficient to promote increased resistance of S. aureus to linoleic acid. Third, inactivation of farE resulted in a significant reduction in the inducible resistance of S. aureus to the bactericidal activity of 100 µM linoleic acid, increased accumulation of [(14)C]linoleic acid by growing cells, and severely impaired growth in the presence of nonbactericidal concentrations of linoleic acid. Cumulatively, these findings represent the first description of a specific mechanism of inducible resistance to antimicrobial fatty acids in a Gram-positive pathogen. IMPORTANCE: Staphylococcus aureus colonizes approximately 25% of humans and is a leading cause of human infectious morbidity and mortality. To persist on human hosts, S. aureus must have intrinsic defense mechanisms to cope with antimicrobial fatty acids, which comprise an important component of human innate defense mechanisms. We have identified a novel pair of genes, farR and farE, that constitute a dedicated regulator and effector of S. aureus resistance to linoleic and arachidonic acids, which are major fatty acids in human membrane phospholipid. Expression of farE, which encodes an efflux pump, is induced in an farR-dependent mechanism, in response to these antimicrobial fatty acids that would be encountered in a tissue abscess.


Subject(s)
Arachidonic Acids/metabolism , Bacterial Proteins/metabolism , Linoleic Acid/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Biological Transport , Gene Expression Regulation, Bacterial , Humans , Polymorphism, Single Nucleotide , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...