Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 834, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567954

ABSTRACT

In plants, developmental plasticity allows for the modulation of organ growth in response to environmental cues. Being in contact with soil, roots are the first organ that responds to various types of soil abiotic stress such as high salt concentration. In the root, developmental plasticity relies on changes in the activity of the apical meristem, the region at the tip of the root where a set of self-renewing undifferentiated stem cells sustain growth. Here, we show that salt stress promotes differentiation of root meristem cells via reducing the dosage of the microRNAs miR165 and 166. By means of genetic, molecular and computational analysis, we show that the levels of miR165 and 166 respond to high salt concentration, and that miR165 and 166-dependent PHABULOSA (PHB) modulation is central to the response of root growth to this stress. Specifically, we show that salt-dependent reduction of miR165 and 166 causes a rapid increase in PHB expression and, hence, production of the root meristem pro-differentiation hormone cytokinin. Our data provide direct evidence for how the miRNA-dependent modulation of transcription factor dosage mediates plastic development in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Meristem/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/metabolism , Salt Stress/genetics
3.
J Exp Bot ; 72(19): 6755-6767, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34350947

ABSTRACT

In both animal and plants, establishment of body axes is fundamental for proper organ development. Plant roots show two main developmental axes: the proximo-distal axis, which spans from the hypocotyl-root junction to the root tip; and the radial axis, which traverses from the vascular tissue to the epidermis. Root axes are determined in the root meristem. The root meristem occupies the tip of the root and contains self-renewing stem cells, which continuously produce new root cells. An intricate network of signalling pathways regulates meristem function and patterning to ensure proper root development and growth. In the last decade, miRNAs, 20-21 nucleotide-long molecules with morphogenetic activity, emerged as central regulators of root cell patterning. Their activity intersects with master regulators of meristematic activity, including phytohormones. In this review, we discuss the latest findings about the activity of miRNAs and their interaction with other molecular networks in the formation of root meristem axes. Furthermore, we describe how these small molecules allow root growth to adapt to changes in the environment, while maintaining the correct patterning.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Meristem/genetics , Meristem/metabolism , MicroRNAs/genetics , Plant Growth Regulators , Plant Roots/genetics , Plant Roots/metabolism
4.
Curr Biol ; 31(2): 420-426.e6, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33176130

ABSTRACT

In both animals and plants, development involves anatomical modifications. In the root of Arabidopsis thaliana, maturation of the ground tissue (GT)-a tissue comprising all cells between epidermal and vascular ones-is a paradigmatic example of these modifications, as it generates an additional tissue layer, the middle cortex (MC).1-4 In early post-embryonic phases, the Arabidopsis root GT is composed of one layer of endodermis and one of cortex. A second cortex layer, the MC, is generated by asymmetric cell divisions in about 80% of Arabidopsis primary roots, in a time window spanning from 7 to 14 days post-germination (dpg). The cell cycle regulator CYCLIN D6;1 (CYCD6;1) plays a central role in this process, as its accumulation in the endodermis triggers the formation of MC.5 The phytohormone gibberellin (GA) is a key regulator of the timing of MC formation, as alterations in its signaling and homeostasis result in precocious endodermal asymmetric cell divisions.3,6,7 However, little is known on how GAs are regulated during GT maturation. Here, we show that the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) is a master regulator of MC formation, controlling the accumulation of CYCD6;1 in the endodermis in a cell non-autonomous manner. We show that PHB activates the GA catabolic gene GIBBERELLIN 2 OXIDASE 2 (GA2ox2) in the vascular tissue, thus regulating the stability of the DELLA protein GIBBERELLIN INSENSITIVE (GAI)-a GA signaling repressor-in the root and, hence, CYCD6;1 expression in the endodermis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Cyclins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Homeodomain Proteins/metabolism , Arabidopsis/genetics , Asymmetric Cell Division/genetics , Gibberellins/metabolism , Homeodomain Proteins/genetics , MicroRNAs/metabolism , Mixed Function Oxygenases/genetics , Plant Roots/growth & development , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...