Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neuroimage ; 273: 120093, 2023 06.
Article in English | MEDLINE | ID: mdl-37028733

ABSTRACT

Crossmodal correspondences describe our tendency to associate sensory features from different modalities with each other, such as the pitch of a sound with the size of a visual object. While such crossmodal correspondences (or associations) are described in many behavioural studies their neurophysiological correlates remain unclear. Under the current working model of multisensory perception both a low- and a high-level account seem plausible. That is, the neurophysiological processes shaping these associations could commence in low-level sensory regions, or may predominantly emerge in high-level association regions of semantic and object identification networks. We exploited steady-state visual evoked potentials (SSVEP) to directly probe this question, focusing on the associations between pitch and the visual features of size, hue or chromatic saturation. We found that SSVEPs over occipital regions are sensitive to the congruency between pitch and size, and a source analysis pointed to an origin around primary visual cortices. We speculate that this signature of the pitch-size association in low-level visual cortices reflects the successful pairing of congruent visual and acoustic object properties and may contribute to establishing causal relations between multisensory objects. Besides this, our study also provides a paradigm can be exploited to study other crossmodal associations involving visual stimuli in the future.


Subject(s)
Visual Cortex , Visual Perception , Humans , Visual Perception/physiology , Evoked Potentials, Visual , Attention/physiology , Semantics , Photic Stimulation , Acoustic Stimulation
2.
PLoS One ; 17(7): e0271659, 2022.
Article in English | MEDLINE | ID: mdl-35905100

ABSTRACT

Previous studies have reported correlates of bodily self-illusions such as the rubber hand in signatures of rhythmic brain activity. However, individual studies focused on specific variations of the rubber hand paradigm, used different experimental setups to induce this, or used different control conditions to isolate the neurophysiological signatures related to the illusory state, leaving the specificity of the reported illusion-signatures unclear. We here quantified correlates of the rubber hand illusion in EEG-derived oscillatory brain activity and asked two questions: which of the observed correlates are robust to the precise nature of the control conditions used as contrast for the illusory state, and whether such correlates emerge directly around the subjective illusion onset. To address these questions, we relied on two experimental configurations to induce the illusion, on different non-illusion conditions to isolate neurophysiological signatures of the illusory state, and we implemented an analysis directly focusing on the immediate moment of the illusion onset. Our results reveal a widespread suppression of alpha and beta-band activity associated with the illusory state in general, whereby the reduction of beta power prevailed around the immediate illusion onset. These results confirm previous reports of a suppression of alpha and beta rhythms during body illusions, but also highlight the difficulties to directly pinpoint the precise neurophysiological correlates of the illusory state.


Subject(s)
Illusions , Touch Perception , Beta Rhythm , Hand/physiology , Humans , Illusions/physiology , Proprioception/physiology , Surveys and Questionnaires , Touch Perception/physiology , Visual Perception/physiology
3.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-34980661

ABSTRACT

The neurophysiological processes reflecting body illusions such as the rubber hand remain debated. Previous studies investigating the neural responses evoked by the illusion-inducing stimulation have provided diverging reports as to when these responses reflect the illusory state of the artificial limb becoming embodied. One reason for these diverging reports may be that different studies contrasted different experimental conditions to isolate potential correlates of the illusion, but individual contrasts may reflect multiple facets of the adopted experimental paradigm and not just the illusory state. To resolve these controversies, we recorded EEG responses in human participants and combined multivariate (cross-)classification with multiple Illusion and non-Illusion conditions. These conditions were designed to probe for markers of the illusory state that generalize across the spatial arrangements of limbs or the specific nature of the control object (a rubber hand or participant's real hand), hence which are independent of the precise experimental conditions used as contrast for the illusion. Our results reveal a parcellation of evoked responses into a temporal sequence of events. Around 125 and 275 ms following stimulus onset, the neurophysiological signals reliably differentiate the illusory state from non-Illusion epochs. These results consolidate previous work by demonstrating multiple neurophysiological correlates of the rubber hand illusion and illustrate how multivariate approaches can help pinpointing those that are independent of the precise experimental configuration used to induce the illusion.


Subject(s)
Illusions , Touch Perception , Hand , Humans , Multivariate Analysis , Proprioception , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...