Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Antioxidants (Basel) ; 12(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38001829

ABSTRACT

Hemoglobin is one of the proteins that are more susceptible to S-glutathionylation and the levels of its modified form, glutathionyl hemoglobin (HbSSG), increase in several human pathological conditions. The scope of the present review is to provide knowledge about how hemoglobin is subjected to S-glutathionylation and how this modification affects its functionality. The different diseases that showed increased levels of HbSSG and the methods used for its quantification in clinical investigations will be also outlined. Since there is a growing need for precise and reliable methods for markers of oxidative stress in human blood, this review highlights how HbSSG is emerging more and more as a good indicator of severe oxidative stress but also as a key pathogenic factor in several diseases.

2.
Antioxidants (Basel) ; 11(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36358501

ABSTRACT

Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-ß-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.

3.
Diagnostics (Basel) ; 11(2)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573278

ABSTRACT

The increasing availability of molecular data provided by next-generation sequencing (NGS) techniques is allowing improvement in the possibilities of diagnosis and prognosis in renal cancer. Reliable and accurate predictors based on selected gene panels are urgently needed for better stratification of renal cell carcinoma (RCC) patients in order to define a personalized treatment plan. Artificial intelligence (AI) algorithms are currently in development for this purpose. Here, we reviewed studies that developed predictors based on AI algorithms for diagnosis and prognosis in renal cancer and we compared them with non-AI-based predictors. Comparing study results, it emerges that the AI prediction performance is good and slightly better than non-AI-based ones. However, there have been only minor improvements in AI predictors in terms of accuracy and the area under the receiver operating curve (AUC) over the last decade and the number of genes used had little influence on these indices. Furthermore, we highlight that different studies having the same goal obtain similar performance despite the fact they use different discriminating genes. This is surprising because genes related to the diagnosis or prognosis are expected to be tumor-specific and independent of selection methods and algorithms. The performance of these predictors will be better with the improvement in the learning methods, as the number of cases increases and by using different types of input data (e.g., non-coding RNAs, proteomic and metabolic). This will allow for more precise identification, classification and staging of cancerous lesions which will be less affected by interpathologist variability.

4.
Antioxidants (Basel) ; 10(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379155

ABSTRACT

Reactive oxygen species (ROS) are produced constantly inside the cells as a consequence of nutrient catabolism. The balance between ROS production and elimination allows to maintain cell redox homeostasis and biological functions, avoiding the occurrence of oxidative distress causing irreversible oxidative damages. A fundamental player in this fine balance is reduced glutathione (GSH), required for the scavenging of ROS as well as of the reactive 2-oxoaldehydes methylglyoxal (MGO). MGO is a cytotoxic compound formed constitutively as byproduct of nutrient catabolism, and in particular of glycolysis, detoxified in a GSH-dependent manner by the glyoxalase pathway consisting in glyoxalase I and glyoxalase II reactions. A physiological increase in ROS production (oxidative eustress, OxeS) is promptly signaled by the decrease of cellular GSH/GSSG ratio which can induce the reversible S-glutathionylation of key proteins aimed at restoring the redox balance. An increase in MGO level also occurs under oxidative stress (OxS) conditions probably due to several events among which the decrease in GSH level and/or the bottleneck of glycolysis caused by the reversible S-glutathionylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. In the present review, it is shown how MGO can play a role as a stress signaling molecule in response to OxeS, contributing to the coordination of cell metabolism with gene expression by the glycation of specific proteins. Moreover, it is highlighted how the products of MGO metabolism, S-D-lactoylglutathione (SLG) and D-lactate, which can be taken up and metabolized by mitochondria, could play important roles in cell response to OxS, contributing to cytosol-mitochondria crosstalk, cytosolic and mitochondrial GSH pools, energy production, and the restoration of the GSH/GSSG ratio. The role for SLG and glyoxalase II in the regulation of protein function through S-glutathionylation under OxS conditions is also discussed. Overall, the data reported here stress the need for further studies aimed at understanding what role the evolutionary-conserved MGO formation and metabolism can play in cell signaling and response to OxS conditions, the aberration of which may importantly contribute to the pathogenesis of diseases associated to elevated OxS.

5.
Antioxidants (Basel) ; 8(9)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505772

ABSTRACT

BACKGROUND: Curcumin is a yellow-orange pigment obtained from the plant Curcuma longa, which is known to exert beneficial effects in several diseases, including cancer. However, at high doses, it may produce toxic and carcinogenic effects in normal cells. In this context, we studied the effects of curcumin on normal human dermal fibroblast (HDF) cells and breast cancer cells (MCF7). METHODS: We used cellular viability and growth assays to evaluate the antiproliferative action of curcumin, analyzed the endogenous glutathione levels, conducted cell cycle, apoptosis, and necrosis analyses, and performed immunodetection of glutathionylated and acetylated H3 histones. RESULTS: We found that HDFs are more sensitive to curcumin treatment than MCF7 cells, resulting in pronounced arrest of cell cycle progression and higher levels of cellular death. In both cell types, the homeostasis of the redox cellular environment did not change after curcumin treatment; however, significant differences were observed in glutathione (GSH) levels and in S-glutathionylation of H3 histones. CONCLUSION: Curcumin administration can potentially confer benefits, but high doses may be toxic. Thus, its use as a dietary supplement or in cancer therapies has a double edge.

6.
Toxins (Basel) ; 11(9)2019 08 22.
Article in English | MEDLINE | ID: mdl-31443430

ABSTRACT

Gelonin from the Indian plant Gelonium multiflorum belongs to the type I ribosome-inactivating proteins (RIPs). Like other members of RIPs, this toxin glycoprotein inhibits protein synthesis of eukaryotic cells; hence, it is largely used in the construction of immunotoxins composed of cell-targeted antibodies. Lysosomal degradation is one of the main issues in targeted tumor therapies, especially for type I RIP-based toxins, as they lack the translocation domains. The result is an attenuated cytosolic delivery and a decrease of the antitumor efficacy of these plant-derived toxins; therefore, strategies to permit their release from endosomal vesicles or modifications of the toxins to make them resistant to degradation are necessary to improve their efficacy. Using infrared spectroscopy, we thoroughly analyzed both the secondary structure and the thermal unfolding of gelonin. Moreover, by the combination of two-dimensional correlation spectroscopy and phase diagram method, it was possible to deduce the sequence of events during the unfolding, confirming the typical characteristic of the RIP members to denature in two steps, as a sequential loss of tertiary and secondary structure was detected at 58 °C and at 65 °C, respectively. Additionally, some discrepancies in the unfolding process between gelonin and saporin-S6, another type I RIP protein, were detected.


Subject(s)
Hot Temperature , Protein Unfolding , Ribosome Inactivating Proteins, Type 1/chemistry , Suregada/chemistry , Toxins, Biological/chemistry , Circular Dichroism , Protein Structure, Secondary , Ribosome Inactivating Proteins, Type 1/isolation & purification , Seeds/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Toxins, Biological/isolation & purification
7.
Biofactors ; 45(2): 152-168, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30561781

ABSTRACT

Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.


Subject(s)
Glutathione/metabolism , Animals , Humans , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Protein Processing, Post-Translational , Signal Transduction
8.
Biochim Biophys Acta Proteins Proteom ; 1866(12): 1242-1248, 2018 12.
Article in English | MEDLINE | ID: mdl-30312772

ABSTRACT

Interaction with model phospholipid membranes of lupin seed γ-conglutin, a glycaemia-lowering protein from Lupinus albus seeds, has been studied by means of Fourier-Transform infrared spectroscopy at p2H 7.0 and at p2H 4.5. The protein maintains the same secondary structure both at p2H 7.0 and at p2H 4.5, but at p2H 7.0 a higher 1H/2H exchange was observed, indicating a greater solvent accessibility. The difference in Tm and TD1/2 of the protein at the abovementioned p2H's has been calculated around 20 °C. Infrared measurements have been then performed in the presence of DMPG and DOPA at p2H 4.5. DMPG showed a little destabilizing effect while DOPA exerted a great stabilizing effect, increasing the Tm of γ-conglutin at p2H 4.5 of more than 20 °C. Since γ-conglutin at p2H 4.5 is in the monomeric form, the interaction with DOPA likely promotes the oligomerization even at p2H 4.5. Interaction between DMPG or DOPA and γ-conglutin has been confirmed by turbidity experiments with DMPC:DMPG or DOPC:DOPA SUVs. Turbidity data also showed high-affinity binding of γ-conglutin to anionic SUVs made up with DOPA. The molecular features outlined in this study are relevant to address the applicative exploitation and to delineate a deeper comprehension of the natural functional role of γ-conglutin.


Subject(s)
Lipid Bilayers/metabolism , Lupinus/metabolism , Plant Proteins/metabolism , Deuterium Exchange Measurement , Dihydroxyphenylalanine/chemistry , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Nephelometry and Turbidimetry , Phosphatidylglycerols/chemistry , Plant Proteins/chemistry , Seeds/metabolism , Spectrophotometry, Infrared , Transition Temperature
9.
Org Biomol Chem ; 16(28): 5167-5177, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29971290

ABSTRACT

Glyoxalase II (GlxII) is an antioxidant glutathione-dependent enzyme, which catalyzes the hydrolysis of S-d-lactoylglutathione to form d-lactic acid and glutathione (GSH). The last product is the most important thiol reducing agent present in all eukaryotic cells that have mitochondria and chloroplasts. It is generally known that GSH plays a crucial role not only in the cellular redox state but also in various cellular processes. One of them is protein S-glutathionylation, a process that can occur through an oxidation reaction of proteins' thiol groups by GSH. Changes in protein S-glutathionylation have been associated with a range of human diseases such as diabetes, cardiovascular and pulmonary diseases, neurodegenerative diseases and cancer. Within a major project aimed at elucidating the role of GlxII in the mechanism of S-glutathionylation, a reliable computational protocol consisting of a protein-protein docking approach followed by atomistic Molecular Dynamics (MD) simulations was developed and it was applied to the prediction of molecular associations between human GlxII (in the presence and absence of GSH) and some proteins that are known to be S-glutathionylated in vitro, such as actin, malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The computational results show a high propensity of GlxII to interact with actin and MDH through its active site and a high stability of the GlxII-protein systems when GSH is present. Moreover, close proximities of GSH with actin and MDH cysteine residues have been found, suggesting that GlxII could be able to perform protein S-glutathionylation by using the GSH molecule present in its catalytic site.


Subject(s)
Molecular Docking Simulation , Thiolester Hydrolases/metabolism , Actins/metabolism , Glutathione/metabolism , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Thermodynamics , Thiolester Hydrolases/chemistry
10.
Cell Biochem Funct ; 34(8): 620-627, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27935136

ABSTRACT

Glyoxalase II, the second of 2 enzymes in the glyoxalase system, is a hydroxyacylglutathione hydrolase that catalyses the hydrolysis of S-d-lactoylglutathione to form d-lactic acid and glutathione, which is released from the active site. The tripeptide glutathione is the major sulfhydryl antioxidant and has been shown to control several functions, including S-glutathionylation of proteins. S-Glutathionylation is a way for the cells to store reduced glutathione during oxidative stress, or to protect protein thiol groups from irreversible oxidation, and few enzymes involved in protein S-glutathionylation have been found to date. In this work, the enzyme glyoxalase II and its substrate S-d-lactoylglutathione were incubated with malate dehydrogenase or with actin, resulting in a glutathionylation reaction. Glyoxalase II was also submitted to docking studies. Computational data presented a high propensity of the enzyme to interact with malate dehydrogenase or actin through its catalytic site and further in silico investigation showed a high folding stability of glyoxalase II toward its own reaction product glutathione both protonated and unprotonated. This study suggests that glyoxalase II, through a specific interaction of its catalytic site with target proteins, could be able to perform a rapid and specific protein S-glutathionylation using its natural substrate S-d-lactoylglutathione. SIGNIFICANCE: This article reports for the first time a possible additional role of Glo2 that, after interacting with a target protein, is able to promote S-glutathionylation using its natural substrate SLG, a glutathione derived compound. In this perspective, Glo2 can play a new important regulatory role inS-glutathionylation, acquiring further significance in cellular post-translational modifications of proteins.


Subject(s)
Computer Simulation , Glutathione/metabolism , Thiolester Hydrolases/metabolism , Actins/metabolism , Glutathione/chemistry , Humans , Malate Dehydrogenase/metabolism , Molecular Docking Simulation , Thiolester Hydrolases/chemistry
11.
Biochimie ; 118: 244-52, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26409898

ABSTRACT

Bovine α1-acid glycoprotein (bAGP), a thermostable counterpart of its human homologue, is a positive acute phase protein involved in binding and transportation of a large number of bio-active molecules and drugs across the body. We have investigated the effect of low pH and reducing conditions on the structure of the protein and found that it aggregates at high temperatures. The aggregates show a fibrillar structure when observed with electron microscopy. Aggregation assays using the amyloid-specific dye Thioflavin T show the presence of a lag phase which was neither abolished nor shortened when seeds were added. A priori reduction of the two disulfide bridges of bAGP, on the other hand, abolished the lag phase and reveals a connection between the kinetics of reduction and aggregation. We provide a kinetic interpretation and the corresponding rate laws allowing to model the process of fibril formation by bAGP under reducing conditions. Our interpretation allows to assess the role of disulfide bridges on the fibrillation kinetics of bAGP and can provide a more accurate interpretation of the fibrillation kinetics of other amyloidogenic proteins containing disulfide bridges.


Subject(s)
Amyloid/chemistry , Disulfides/chemistry , Orosomucoid/metabolism , Amyloid/metabolism , Animals , Cattle , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Transmission , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared
12.
Biochim Biophys Acta ; 1854(10 Pt A): 1357-64, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26096917

ABSTRACT

Saporin-S6 is a plant toxin belonging to the type 1 ribosome-inactivating protein (RIP) family. Since it was extracted and isolated from Saponaria officinalis for the first time almost thirty years ago, the protein has been widely studied mainly for its potential applications in anti-tumour and anti-viral infection therapy. Like other RIPs, saporin-S6 is particularly effective in the form of immunotoxin conjugated with monoclonal antibodies and its chemico-physical characteristics made the protein a perfect candidate for the synthesis, development and use of saporin-S6-based chimeric toxins. The high stability of the protein against different denaturing agents has been broadly demonstrated, however, its complete thermal unfolding characterization has not already been performed. In this work we analyse in detail structure, thermostability and unfolding features by means of infrared spectroscopy coupled with two-dimensional correlation spectroscopy. Our data showed that saporin-S6 in solution at neutral pH exhibits a secondary structure analogue to that of the crystal and confirmed its good stability at moderately high temperatures, with a temperature of melting of 58°C. Our results also demonstrated that the thermal unfolding process is non-cooperative and occurs in two steps, and revealed the sequence of the events that take place during the denaturation, showing a higher stability of the N-terminal domain of the protein.


Subject(s)
Ribosome Inactivating Proteins, Type 1/chemistry , Saponaria/chemistry , Seeds/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Models, Molecular , Protein Denaturation , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Unfolding , Ribosome Inactivating Proteins, Type 1/isolation & purification , Saporins , Solutions , Spectroscopy, Fourier Transform Infrared
13.
PLoS One ; 10(2): e0117413, 2015.
Article in English | MEDLINE | ID: mdl-25710793

ABSTRACT

Bacterial HtrAs are proteases engaged in extracytoplasmic activities during stressful conditions and pathogenesis. A model prokaryotic HtrA (HtrA/DegP from Escherichia coli) requires activation to cleave its substrates efficiently. In the inactive state of the enzyme, one of the regulatory loops, termed LA, forms inhibitory contacts in the area of the active center. Reduction of the disulfide bond located in the middle of LA stimulates HtrA activity in vivo suggesting that this S-S bond may play a regulatory role, although the mechanism of this stimulation is not known. Here, we show that HtrA lacking an S-S bridge cleaved a model peptide substrate more efficiently and exhibited a higher affinity for a protein substrate. An LA loop lacking the disulfide was more exposed to the solvent; hence, at least some of the interactions involving this loop must have been disturbed. The protein without S-S bonds demonstrated lower thermal stability and was more easily converted to a dodecameric active oligomeric form. Thus, the lack of the disulfide within LA affected the stability and the overall structure of the HtrA molecule. In this study, we have also demonstrated that in vitro human thioredoxin 1 is able to reduce HtrA; thus, reduction of HtrA can be performed enzymatically.


Subject(s)
Escherichia coli/enzymology , Heat-Shock Proteins/metabolism , Periplasmic Proteins/metabolism , Serine Endopeptidases/metabolism , Amino Acid Sequence , Circular Dichroism , Disulfides , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Histidine/genetics , Histidine/metabolism , Kinetics , Molecular Sequence Data , Mutagenesis , Oligopeptides/genetics , Oligopeptides/metabolism , Oxidation-Reduction , Periplasmic Proteins/chemistry , Periplasmic Proteins/genetics , Proteolysis , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Sequence Alignment , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Substrate Specificity , Surface Plasmon Resonance , Temperature
14.
Biochimie ; 102: 19-28, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24530968

ABSTRACT

α1-Acid glycoprotein (AGP) is a plasma protein and a member of the acute phase response. AGP is known to bind and carry several biologically active compounds, as well as to down-modulate the immune system activities. In this work, the structure of bovine AGP has been investigated by Fourier-Transform infrared spectroscopy. A model structure has been obtained on the basis of human AGP and refined by molecular dynamics. In spite of the similar structure, bovine AGP shows an unexpectedly higher (∼20 °C) thermostability than its human counterpart. Inspection of the model structure has pointed out the presence of 12 ionic bridges and 2 sulphur-aromatic interactions, whereas only 6 ionic bridges were detected in human AGP. The high number (9) of glutamic acid residues involved in the ionic interactions might explain the significantly decreased thermostability measured at pH 5.5 (Tm ∼ 71 °C) with respect to pH 7.4 (Tm ∼ 81 °C), whereas thermostability of human AGP was only slightly affected by lowering the pH. As in human AGP and several other lipocalins, a temperature-induced molten globule state has been observed in the denaturation pathway of bovine AGP.


Subject(s)
Computer Simulation , Orosomucoid/chemistry , Protein Conformation , Protein Stability , Animals , Cattle , Humans , Hydrogen-Ion Concentration , Lipocalins/chemistry , Molecular Dynamics Simulation , Orosomucoid/metabolism , Protein Folding , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Temperature
15.
Biochimie ; 95(2): 158-66, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22996070

ABSTRACT

Human α(1)-acid glycoprotein (AGP) is a positive acute phase plasma protein containing two disulfide bridges. Structural studies have shown that under specific conditions AGP undergoes aggregation. In this study, we analysed the nature of AGP's aggregates formed under reducing and non-reducing conditions at pH 5.5 and at relatively low temperatures. Thioflavin T and Congo red spectroscopic analyses indicated the presence of cross-ß structures in both unreduced and reduced AGP aggregates. In these samples amyloid-like fibrils were detected by transmission electron microscopy. The fibrils are branched and bent and present in very large amount in reduced AGP. Kinetics of AGP fibrillation proceeds without a lag phase and the rate constants of cross-ß formation are linearly dependent on AGP concentration and result higher under reducing conditions. The data suggest a possible downhill mechanism of polymerization with a first-order monomer concentration dependence. Bioinformatics tools highlighted an extended region that sheathes one side of the molecule containing aggregation-prone regions. Reducing conditions make the extended region less constricted, allowing greater exposure of aggregation-prone regions, thus explaining the higher propensity of AGP to aggregate and fibrillate.


Subject(s)
Disulfides/chemistry , Orosomucoid/chemistry , Amyloid/chemistry , Benzothiazoles , Congo Red , Flocculation , Humans , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Thiazoles
16.
J Pharm Sci ; 101(7): 2564-73, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22467430

ABSTRACT

Thymoquinone (TQ) is the main bioactive component isolated from Nigella sativa essential oil and seeds and has been used for the treatment of inflammations, liver disorders, arthritis, and is of great importance as a promising therapeutic drug for different diseases including cancer. This paper reports the first experimental evidence on binding of TQ to human α(1)-acid glycoprotein (AGP), an important drug-binding glycoprotein in human plasma, which affects pharmacokinetic properties of various therapeutic agents. The interaction of TQ with AGP has been characterized by Fourier transform infrared (FTIR) and fluorescence spectroscopy, as well as by molecular docking experiments. FTIR spectroscopy showed that the binding of TQ to AGP slightly increases its thermal stability and shifts the existence of a molten globule-like state observed in a previous study to higher temperature. The binding constants K(a); the number of binding sites n; and the corresponding thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures were calculated through fluorescence spectroscopy. Fluorescence quenching experiments indicated that TQ binding involves hydrophobic interactions and to a lower extent hydrogen bonds, in agreement with molecular docking experiments. The data on binding ability of TQ to AGP represent basic information for the TQ pharmacokinetics such as drug metabolism and distribution in the body.


Subject(s)
Benzoquinones/pharmacology , Nigella sativa/chemistry , Orosomucoid/metabolism , Benzoquinones/chemistry , Binding Sites , Humans , Hydrogen Bonding , Models, Molecular , Orosomucoid/chemistry , Plant Oils/chemistry , Protein Binding , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Thermodynamics
17.
Biochimie ; 94(2): 479-86, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21896305

ABSTRACT

D-serine dehydratase from Saccharomyces cerevisae is a recently discovered dimeric enzyme catalyzing the ß-elimination of D-serine to pyruvate and ammonia. The reaction is highly enantioselective and depends on cofactor pyridoxal-5'-phosphate (PLP) and Zn(2+). In our work, the aldimine linkage tethering PLP to recombinant, tagged D-serine dehydratase (Dsd) has been reduced by treatment with NaBH(4) so as to yield an inactive form of the holoenzyme (DsdR), which was further treated with a protease in order to remove the amino-terminal purification tag. Fourier Transform infrared (FT-IR) spectroscopic analysis revealed that both the reduced form (DsdR) and the reduced/detagged form (DsdRD) maintain the overall secondary structure of Dsd, but featured a significant increased thermal stability. The observed T(m) values for DsdR and for DsdRD shifted to 71.5 °C and 73.3 °C, respectively, resulting in nearly 11 °C and 13 °C higher than the one measured for Dsd. Furthermore, the analysis of the FT-IR spectra acquired in the presence of D-serine and L-serine indicates that, though catalytically inert, DsdRD retains the ability to enantioselectively bind its natural substrate. Sequence analysis of D-serine dehydratase and other PLP-dependent enzymes also highlighted critical residues involved in PLP binding. In virtue of its intrinsic properties, DsdRD represents an ideal candidate for the design of novel platforms based on stable, non-consuming binding proteins aimed at measuring d-serine levels in biological fluids.


Subject(s)
Hydro-Lyases/metabolism , Protein Engineering , Pyridoxal Phosphate/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Serine/metabolism , Amino Acid Sequence , Catalysis , Enzyme Stability , Escherichia coli , Holoenzymes , Hot Temperature , Hydro-Lyases/genetics , Kinetics , Molecular Sequence Data , Protein Structure, Secondary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Spectroscopy, Fourier Transform Infrared , Stereoisomerism , Zinc/metabolism
18.
Biochimie ; 93(9): 1529-36, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21621584

ABSTRACT

Human α(1)-acid glycoprotein (AGP) is an acute phase plasma glycoprotein containing two disulfide bridges. As a member of the lipocalin superfamily, it binds and transports several basic and neutral ligands, but a number of other activities have also been described. Thanks to its binding properties, AGP is also a good candidate for the development of biosensors and affinity chromatography media, and in this context detailed structural information is needed. The structural properties of AGP at different p(2)Hs and under reducing conditions were analysed by FT-IR spectroscopy. The obtained data indicate that AGP, when denatured, does not aggregate at neutral or basic p(2)Hs whilst it does at acidic p(2)Hs. Under reducing conditions the protein is remarkably less thermostable than its oxidized counterpart and presents an enhanced tendency to aggregate, even at neutral p(2)H. A heat-induced molten globule-like state (MG) was detected at 55 °C at p(2)H 7.4 and 5.5. At p(2)H 4.5 the MG occurred at 45 °C with an onset of formation at 40 °C. The MG was not observed under reducing conditions. A lower affinity of chlorpromazine and progesterone for the MG formed at p(2)H 4.5 and 40 °C was observed, suggesting that ligand(s) may be released near the negative surfaces of biological membranes. Furthermore, the reduced AGP displays an enhanced affinity for progesterone, indicating the importance of disulfide bonds for the binding capacity of AGP.


Subject(s)
Disulfides/chemistry , Orosomucoid/chemistry , Humans , Hydrogen-Ion Concentration , Ligands , Protein Conformation , Structure-Activity Relationship , Temperature
19.
Phytomedicine ; 18(10): 887-95, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21397480

ABSTRACT

In Nigeria, Mucuna pruriens seeds are locally prescribed as an oral prophylactic for snake bite and it is claimed that when two seeds are swallowed they protect the individual for a year against snake bites. In order to understand the Mucuna pruriens antisnake properties, the proteins from the acqueous extract of seeds were purified by three chromatographic steps: ConA affinity chromatography, tandem anionic-cationic exchange and gel filtration, obtaining a fraction conventionally called gpMucB. This purified fraction was analysed by SDS-PAGE obtaining 3 bands with apparent masses ranging from 20 to 24 kDa, and by MALDI-TOF which showed two main peaks of 21 and 23 kDa and another small peak of 19 kDa. On the other hand, gel filtration analysis of the native protein indicated a molecular mass of about 70 kDa suggesting that in its native form, gpMucB is most likely an oligomeric multiform protein. Infrared spectroscopy of gpMucB indicated that the protein is particularly thermostable both at neutral and acidic pHs and that it is an all beta protein. All data suggest that gpMucB belongs to the Kunitz-type trypsin inhibitor family explaining the direct anti-snake venom activity of Mucuna pruriens seeds.


Subject(s)
Antivenins/chemistry , Glycoproteins/chemistry , Mucuna/chemistry , Peptides/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Antivenins/pharmacology , Chromatography, Affinity , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Glycoproteins/analysis , Glycoproteins/pharmacology , Hydrogen-Ion Concentration , Peptides/isolation & purification , Peptides/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Protein Stability , Protein Structure, Secondary , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
Biochimie ; 93(3): 542-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21130133

ABSTRACT

D-serine dehydratase (Dsd) from baker's yeast is a recently discovered enzyme catalyzing the oxidation of D-serine to pyruvate and ammonia. The reaction depends on the cofactors pyridoxal-5'-phosphate (PLP) and Zn(2+), featuring a very high selectivity towards the D-enantiomer of the amino acid serine. In humans, altered levels of D-serine in the cerebrospinal fluid (CSF) and blood correlate with the onset and evolution of a number of neurodegenerative diseases. Up to date very little is known on the structure of Dsd. Hence, we have investigated the structure of this enzyme by means of Fourier Transform infrared (FT-IR) spectroscopy and used the structural data derived thereof to validate a homology model of Dsd. In this model, Dsd adopts a fold that is characteristic of type III pyridoxal-dependent enzymes. This consists of an α/ß (TIM) barrel and a ß-sandwich domain at the N- and C-termini, respectively. Analysis of the Amide I and Amide III infrared bands revealed that the amounts of α (24%), ß (29%) and unordered structures (47%) correlate well with those derived from the model (25%, 29% and 46% respectively), suggesting reliability of the latter. In addition, the model of Dsd was further refined by recreating the PLP- and zinc-restored active site based on a PLP- and zinc-dependent bacterial amino acid racemase recently crystallized, allowing us to identify the potential cofactor and metal binding residues of Dsd.


Subject(s)
Computational Biology , Hydro-Lyases/chemistry , Saccharomyces cerevisiae/enzymology , Spectroscopy, Fourier Transform Infrared , Catalytic Domain , Coenzymes/chemistry , Coenzymes/metabolism , Enzyme Stability , Hydro-Lyases/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Protein Structure, Secondary , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/metabolism , Reproducibility of Results , Sequence Homology, Amino Acid , Zinc/chemistry , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL