Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 219: 17-30, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579938

ABSTRACT

Non-exudative age-related macular degeneration (NE-AMD) is the leading blindness cause in the elderly. Clinical and experimental evidence supports that early alterations in macular retinal pigment epithelium (RPE) mitochondria play a key role in NE-AMD-induced damage. Mitochondrial dynamics (biogenesis, fusion, fission, and mitophagy), which is under the central control of AMP-activated kinase (AMPK), in turn, determines mitochondrial quality. We have developed a NE-AMD model in C57BL/6J mice induced by unilateral superior cervical ganglionectomy (SCGx), which progressively reproduces the disease hallmarks circumscribed to the temporal region of the RPE/outer retina that exhibits several characteristics of the human macula. In this work we have studied RPE mitochondrial structure, dynamics, function, and AMPK role on these parameters' regulation at the nasal and temporal RPE from control eyes and at an early stage of experimental NE-AMD (i.e., 4 weeks post-SCGx). Although RPE mitochondrial mass was preserved, their function, which was higher at the temporal than at the nasal RPE in control eyes, was significantly decreased at 4 weeks post-SCGx at the same region. Mitochondria were bigger, more elongated, and with denser cristae at the temporal RPE from control eyes. Exclusively at the temporal RPE, SCGx severely affected mitochondrial morphology and dynamics, together with the levels of phosphorylated AMPK (p-AMPK). AMPK activation with metformin restored RPE p-AMPK levels, and mitochondrial dynamics, structure, and function at 4 weeks post-SCGx, as well as visual function and RPE/outer retina structure at 10 weeks post-SCGx. These results demonstrate a key role of the temporal RPE mitochondrial homeostasis as an early target for NE-AMD-induced damage, and that pharmacological AMPK activation could preserve mitochondrial morphology, dynamics, and function, and, consequently, avoid the functional and structural damage induced by NE-AMD.


Subject(s)
AMP-Activated Protein Kinases , Disease Models, Animal , Macular Degeneration , Mice, Inbred C57BL , Mitochondria , Mitochondrial Dynamics , Retinal Pigment Epithelium , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mice , Macular Degeneration/pathology , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , AMP-Activated Protein Kinases/metabolism , Humans , Metformin/pharmacology
2.
Chromosoma ; 128(3): 443-451, 2019 09.
Article in English | MEDLINE | ID: mdl-30793238

ABSTRACT

The synaptonemal complex is an evolutionarily conserved, supramolecular structure that holds the homologous chromosomes together during the pachytene stage of the first meiotic prophase. Among vertebrates, synaptonemal complex dynamics has been analyzed in mouse spermatocytes following the assembly of its components from leptotene to pachytene stages. With few exceptions, a detailed study of the disassembly of SCs and the behavior of SC components at recombination sites at the onset of diplotene has not been accomplished. Here, we describe for the first time the progressive disassembly of the SC in chicken oocytes during the initial steps of desynapsis using immunolocalization of specific SC proteins and super-resolution microscopy. We found that transverse filament protein SYCP1 and central element component SYCE3 remain associated with the lateral elements at the beginning of chromosomal axis separation. As the separation between lateral elements widens, these proteins eventually disappear, without any evidence of subsequent association. Our observations support the idea that post-translational modifications of the central region components have a role at the initial phases of the SC disassembly. At the crossover sites, signaled by persistent MLH1 foci, the central region proteins are no longer detected when the SYCP3-positive lateral elements are widely separated. These findings are indicative that SC disassembly follows a general pattern along the desynaptic bivalents. The present work shows that the use of avian oocytes at prophase I provides a valuable model to explore the time course and chromosomal localization of SC proteins and its relationship with local changes along meiotic bivalents.


Subject(s)
Chickens/genetics , Microscopy, Confocal , Oocytes/metabolism , Synaptonemal Complex/metabolism , Animals , Biomarkers , Chromosome Segregation , Female , Fluorescent Antibody Technique , Genetic Loci , Meiosis
3.
Cytogenet Genome Res ; 152(3): 137-147, 2017.
Article in English | MEDLINE | ID: mdl-28848076

ABSTRACT

The heteromorphic X and Y chromosomes behave in a special way in mammalian spermatocytes; they form the XY body and synapse only partially. The aim of this article was to study the origin and the role of the special differentiations in the XY pair of the domestic cat during pachytene by analyzing its fine structural characteristics and the immunolocalization of the main meiotic proteins SYCP3, SYCP1, SYCE3, SMC3, γ-H2AX, BRCA1, H3K27me3, and MLH1. The cat XY body shows particularly striking structures: an extreme degree of axial fibrillation in late pachynema and a special location of SYCP3-containing fibrils, bridging different regions of the main X axis, as well as one bridge at the inner end of the pairing region that colocalizes with the single mandatory MLH1 focus. There are sequential changes, first bullous expansions, then subdivision into fibrils, all involving axial thickening. The chromatin of the XY body presents the usual features of meiotic sex chromosome inactivation. An analysis of the XY body of many eutherians and metatherians suggests that axial thickenings are primitive features. The sequential changes in the mass and location of SYCP3-containing fibers vary among the clades because of specific processes of axial assembly/disassembly occurring in different species.


Subject(s)
Cats/genetics , Nuclear Proteins/metabolism , Pachytene Stage/genetics , Synaptonemal Complex/metabolism , X Chromosome/metabolism , X Chromosome/ultrastructure , Y Chromosome/metabolism , Y Chromosome/ultrastructure , Animals , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Chromatin/metabolism , Chromatin/ultrastructure , Histones/genetics , Histones/metabolism , Male , Microscopy, Fluorescence , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , Spermatocytes/metabolism , Synaptonemal Complex/genetics
4.
Sex Dev ; 11(5-6): 225-237, 2017.
Article in English | MEDLINE | ID: mdl-29393262

ABSTRACT

Androgen insensitivity syndrome (AIS) is a hereditary condition in patients with a 46,XY karyotype in which loss-of-function mutations of the androgen receptor (AR) gene are responsible for defects in virilization. The aim of this study was to investigate the consequences of the lack of AR activity on germ cell survival and the degree of testicular development reached by these patients by analyzing gonadal tissue from patients with AIS prior to Sertoli cell maturation at puberty. Twenty-three gonads from 13 patients with AIS were assessed and compared to 18 testes from 17 subjects without endocrine disorders. The study of the gonadal structure using conventional microscopy and the ultrastructural characteristics of remnant germ cells using electron microscopy, combined with the immunohistochemical analysis of specific germ cell markers (MAGE-A4 for premeiotic germ cells and of OCT3/4 for gonocytes), enabled us to carry out a thorough investigation of germ cell life in an androgen-insensitive microenvironment throughout prepuberty until young adulthood. Here, we show that germ cell degeneration starts very early, with a marked decrease in number after only 2 years of life, and we demonstrate the permanence of gonocytes in AIS testis samples until puberty, describing 2 different populations. Additionally, our results provide further evidence for the importance of AR signaling in peritubular myoid cells during prepuberty to maintain Sertoli and spermatogonial cell health and survival.


Subject(s)
Androgen-Insensitivity Syndrome/pathology , Puberty/metabolism , Puberty/physiology , Androgen-Insensitivity Syndrome/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Child , Child, Preschool , Germ Cells/metabolism , Humans , Immunohistochemistry , Infant , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Spermatogonia/metabolism , Spermatogonia/pathology , Testis/metabolism , Testis/pathology
5.
Chromosoma ; 125(4): 701-8, 2016 09.
Article in English | MEDLINE | ID: mdl-26661581

ABSTRACT

The XX/XY system is the rule among mammals. However, many exceptions from this general pattern have been discovered since the last decades. One of these non-conventional sex chromosome mechanisms is the multiple sex chromosome system, which is evolutionary fixed among many bat species of the family Phyllostomidae, and has arisen by a translocation between one original gonosome (X or Y chromosome), and an autosome, giving rise to a "neo-XY body." The aim of this work is to study the synaptic behavior and the chromatin remodeling of multiple sex chromosomes in different species of phyllostomid bats using electron microscopy and molecular markers. Testicular tissues from adult males of the species Artibeus lituratus, Artibeus planirostris, Uroderma bilobatum, and Vampyrodes caraccioli from the eastern Amazonia were analyzed by optical/electron microscopy and immunofluorescence of meiotic proteins involved in synapsis (SYCP3 and SYCE3), sister-chromatid cohesion (SMC3), and chromatin silencing (BRCA1, γ-H2AX, and RNApol 2). The presence of asynaptic axes-labeled by BRCA1 and γ-H2AX-at meiotic prophase in testes that have a normal development of spermatogenesis, suggests that the basic mechanism that arrests spreading of transcriptional silencing (meiotic sex chromosome inactivation (MSCI)) to the autosomal segments may be per se the formation of a functional synaptonemal complex between homologous or non-homologous regions, and thus, this SC barrier might be probably related to the preservation of fertility in these systems.


Subject(s)
Chiroptera/genetics , Chromatin Assembly and Disassembly/physiology , Chromatin/metabolism , Sex Determination Processes/genetics , X Chromosome/genetics , Y Chromosome/genetics , Animals , Chromosome Pairing/genetics , Male , Pachytene Stage/physiology , Spermatocytes/metabolism , Spermatogenesis/physiology
6.
Biol Reprod ; 90(3): 48, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24451984

ABSTRACT

The armadillo Chaetophractus villosus is a seasonal breeder whose seminiferous epithelium undergoes rapid regression with massive germ cell loss, leaving the tubules with only Sertoli cells and spermatogonia. Here, we addressed the question of whether this regression entails 1) the disassembly of cell junctions (immunolocalization of nectin-3, Cadm1, N-cadherin, and beta-catenin, and transmission electron microscopy [TEM]); 2) apoptosis (immunolocalization of cytochrome c and caspase 3; TUNEL assay); and 3) the involvement of Sertoli cells in germ cell phagocytosis (TEM). We showed a dramatic reduction in the extension of vimentin filaments associated with desmosomelike junctions at the interface between Sertoli and germ cells, and an increased diffusion of the immunosignals of nectin-3, Cadm1, N-cadherin, and beta-catenin. Together, these results suggest loss of Sertoli-germ cell adhesion, which in turn might determine postmeiotic cell sloughing at the beginning of epithelium regression. Then, loss of Sertoli-germ cell adhesion triggers cell death. Cytochrome c is released from mitochondria, but although postmeiotic cells were negative for late apoptotic markers, at advanced regression spermatocytes were positive for all apoptotic markers. Transmission electron microscopy analysis showed cytoplasmic engulfment of cell debris and lipid droplets within Sertoli cells, a sign of their phagocytic activity, which contributes to the elimination of the residual meiocytes still present in the latest regression phases. These findings are novel and add new players to the mechanisms of seminiferous epithelium regression occurring in seasonal breeders, and they introduce the armadillo as an interesting model for studying seasonal spermatogenesis.


Subject(s)
Armadillos/physiology , Cell Adhesion/physiology , Germ Cells/physiology , Seminiferous Epithelium/physiology , Sertoli Cells/physiology , Animals , Apoptosis/physiology , Cadherins/metabolism , Caspase 3/metabolism , Cell Adhesion Molecules/metabolism , Cytochromes c/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Intercellular Junctions/physiology , Male , Meiosis/physiology , Microscopy, Electron, Transmission , Nectins , Phagocytosis/physiology , Seasons , beta Catenin/metabolism
7.
Methods Mol Biol ; 1094: 137-49, 2014.
Article in English | MEDLINE | ID: mdl-24162985

ABSTRACT

Structural and immunohistochemical methods have been extremely useful for the characterization of the XY body (the structure formed by the XY pair during meiotic prophase) in Man and in other mammals. These methods are widely used at the present time for the detection of abnormalities leading to human infertility. The basic ultrastructural methods are spreading of pachytene spermatocytes, thin-sectioning techniques with or without 3-D reconstructions, and the monitoring of all specimens with semi-thin sections. Immunofluorescent techniques also use spreading of meiotic cells for the analysis of the XY body, and they can be combined with the fluorescence in situ hybridization (FISH) technique, in the so-called immuno-FISH. Epitope retrieval techniques are also used.


Subject(s)
Biomarkers/metabolism , Chromatin/ultrastructure , Fluorescent Antibody Technique/methods , Biopsy , Humans , In Situ Hybridization, Fluorescence , Male , Spermatocytes/ultrastructure , Staining and Labeling , Testis/pathology
8.
Chromosome Res ; 21(8): 753-63, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24043547

ABSTRACT

The XY body from spermatocytes of the rodent Galea musteloides shows progressive changes of the synaptonemal complex (SC) axes and the X-chromatin during pachynema. There is a gross thickening of the X-axis and the formation of a large X chromosome loop at mid and late pachytene stages. The SC proteins synaptonemal complex protein 3 (SYCP3), synaptonemal complex protein 1, and synaptonemal complex central element protein 3 and the proteins breast cancer 1, MutL homolog 1 (MLH1), and radiation-repair 51 (related to meiotic processes), the cohesin structural maintenance of chromosome 3, the centromeric protein (with CREST antibody), and the silenced chromatin (with phosphorylated (139ph) H2A histone family, member X (γ-H2AX) antibody) were analyzed in this XY body. The thick X-axis, including the interstitial loop, becomes formed by four to six laminae showing a cross-striation with a periodicity of about 20 nm. The whole length of the gross X-axis shows no significant changes during pachynema, but the interstitial chromatin of the X chromosome and the X centromere are included in the large loop, and it becomes separated from the SC. A conventional SC formed by the Y-axis, a central region and a thin lateral element originally corresponding to the X-axis, remains undisturbed up to the end of pachynema. A single MLH1 focus develops either at the distal or the proximal region of the loop end attached to the conventional SC. The chromatin surrounding the thickened axis is labeled with γ-H2AX. It is shown that most of the SYCP3 protein associated with the X chromosome loop is not involved in the SC maintenance, but it is located with the cohesin axis separated from the SC proper.


Subject(s)
Rodentia/genetics , Synaptonemal Complex/ultrastructure , X Chromosome/ultrastructure , Animals , Centromere/genetics , Centromere/ultrastructure , Chromatin/genetics , Chromatin/ultrastructure , Evolution, Molecular , Gene Silencing , Guinea Pigs , Male , Nuclear Envelope , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pachytene Stage , Sequence Analysis, DNA , Synaptonemal Complex/genetics , X Chromosome/genetics
9.
Chromosome Res ; 20(2): 293-302, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22274548

ABSTRACT

Three xenarthrans species Chaetophractus villosus, Chaetophractus vellerosus, and Zaedyus pichiy have been used for the analysis of the structure, behavior, and immunochemical features of the XY body during pachytene. In all these species, the sex chromosomes form an XY body easily identifiable in thin sections by the special and regular packing of the chromatin fibers of the internal region of the XY body ("differential" regions) and those of the peripheral region (synaptic region). Spermatocyte spreads show a complete synapsis between the X- and the Y-axis, which lasts up to the end of pachytene. From the early pachytene substages to the late ones, the X-axis develops prominent branches, which in late pachytene span the synaptic region. Synapsis is regular as shown by SYCP1 labeling. Axial development is followed by SYCP3 labeling and in the asynaptic region of the X-axis by BRCA1. Gamma-H2AX labels exclusively the differential (asynaptic) region of the X chromosome. A single focus is labeled by MLH1 in the synaptic region. The location of this MLH1 focus spans from 0.3 to 1.6 µm from the telomere in the analyzed xenarthrans, covering approximately half of the Y-axis length. It is concluded that xenarthrans, as basal placental mammals, harbor the largest pseudoautosomal regions of presently analyzed mammals, and shows the typical features of meiotic sex chromosome inactivation (MSCI).


Subject(s)
Armadillos/genetics , Chromatin Assembly and Disassembly , Chromosome Pairing , Recombination, Genetic , Animals , Chromatin/ultrastructure , Male , Sex Chromosomes , Spermatocytes/metabolism , X Chromosome/ultrastructure , Y Chromosome/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...