Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Article in English | MEDLINE | ID: mdl-38822829

ABSTRACT

Whilst the contribution of peripheral and central inflammation to neurodegeneration in Parkinson's disease and the role of the immune response in this disorder are well known, the effects of the anti-inflammatory response on the disease have not been described in depth. This study is aimed to assess the changes in the regulatory/inflammatory immune response in recently diagnosed, untreated PD patients and a year after. Twenty-one PD patients and 19 healthy controls were included and followed-up for 1 year. The levels of immunoregulatory cells (CD4+ Tregs, Bregs, and CD8+ Tregs); classical, nonclassical, and intermediate monocytes, and proinflammatory cells (Th1, Th2, and Th17) were measured by flow cytometry. Cytokine levels were determined by ELISA. Clinical follow-up was based on the Hoehn & Yahr and UDPRS scales. Our results indicate that the regulatory response in PD patients on follow-up was characterized by increased levels of active Tregs, functional Tregs, TR1, IL-10-producing functional Bregs, and IL-10-producing classical monocytes, along with decreased counts of Bregs and plasma cells. With respect to the proinflammatory immune response, peripheral levels of Th1 IFN-γ+ cells were decreased in treated PD patients, whilst the levels of CD4+ TBET+ cells, HLA-DR+ intermediate monocytes, IL-6, and IL-4 were increased after a 1-year follow-up. Our main finding was an increased regulatory T cell response after a 1-year follow-up and its link with clinical improvement in PD patients. In conclusion, after a 1-year follow-up, PD patients exhibited increased levels of regulatory populations, which correlated with clinical improvement. However, a persistent inflammatory environment and active immune response were observed.

2.
Arch Med Res ; 55(2): 102960, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38290199

ABSTRACT

BACKGROUND: SARS-CoV2 induces flu-like symptoms that can rapidly progress to severe acute lung injury and even death. The virus also invades the central nervous system (CNS), causing neuroinflammation and death from central failure. Intravenous (IV) or oral dexamethasone (DXM) reduced 28 d mortality in patients who required supplemental oxygen compared to those who received conventional care alone. Through these routes, DMX fails to reach therapeutic levels in the CNS. In contrast, the intranasal (IN) route produces therapeutic levels of DXM in the CNS, even at low doses, with similar systemic bioavailability. AIMS: To compare IN vs. IV DXM treatment in hospitalized patients with COVID-19. METHODS: A controlled, multicenter, open-label trial. Patients with COVID-19 (69) were randomly assigned to receive IN-DXM (0.12 mg/kg for three days, followed by 0.6 mg/kg for up to seven days) or IV-DXM (6 mg/d for 10 d). The primary outcome was clinical improvement, as defined by the National Early Warning Score (NEWS) ordinal scale. The secondary outcome was death at 28 d between IV and IN patients. Effects of both treatments on biochemical and immunoinflammatory profiles were also recorded. RESULTS: Initially, no significant differences in clinical severity, biometrics, and immunoinflammatory parameters were found between both groups. The NEWS-2 score was reduced, in 23 IN-DXM treated patients, with no significant variations in the 46 IV-DXM treated ones. Ten IV-DXM-treated patients and only one IN-DXM patient died. CONCLUSIONS: IN-DMX reduced NEWS-2 and mortality more efficiently than IV-DXM, suggesting that IN is a more efficient route of DXM administration.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , RNA, Viral , COVID-19 Drug Treatment , Dexamethasone/therapeutic use
3.
Vet Parasitol Reg Stud Reports ; 47: 100951, 2024 01.
Article in English | MEDLINE | ID: mdl-38199694

ABSTRACT

Taeniasis/cysticercosis complex caused by Taenia solium, is a serious public health problem and causes major economic losses to swine producers in developing countries in Asia, Africa and the Americas. Despite scarce epidemiological data, Guatemala is considered endemic for T. solium. A cross-sectional study was conducted in Azacualpa and Malpais, two villages in the department of Zacapa, to assess the prevalence of swine cysticercosis and associated factors. Between March and October 2019, 149 pigs were examined by tongue palpation and serum samples were then collected to detect antibodies by ab-ELISA, and necropsy was performed on pigs that were positive by tongue palpation and/or ab-ELISA, to assess parasite load. Pig owners were asked to fill out a questionnaire on factors related to pig husbandry and occurrence of swine cysticercosis. Pearson's chi-square test and multivariate analysis were used to measure the association between serological results and other variables (p < 0.05 was considered significant). The seroprevalence of swine cysticercosis was 13.4% (13/97, 95% C.I. 6.6%-20.2%) and 25% (13/52, 95% C.I. 13.2%-36.8%) in Azacualpa and Malpais, respectively, yielding an overall seroprevalence of 17.4% (26/149, 95% C.I. 11.4%-23.5%). Parasite loads ranged from 1 to over 23,000 metacestodes per carcass. No bivariate association was found between exposure variables and seropositivity. A positive diagnosis by tongue palpation increased the odds of finding pigs seropositive for cysticercosis by a factor of 16.1 in the multivariate analysis. Despite the high prevalence and parasite load of T. solium, risk factors associated with cysticercosis were not significant in this study.


Subject(s)
Cysticercosis , Swine Diseases , Animals , Swine , Guatemala/epidemiology , Cross-Sectional Studies , Rural Population , Seroepidemiologic Studies , Cysticercosis/epidemiology , Cysticercosis/veterinary , Swine Diseases/epidemiology
4.
Appl Microbiol Biotechnol ; 108(1): 179, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280035

ABSTRACT

Several COVID-19 vaccines use adenovirus vectors to deliver the SARS-CoV-2 spike (S) protein. Immunization with these vaccines promotes immunity against the S protein, but against also the adenovirus itself. This could interfere with the entry of the vaccine into the cell, reducing its efficacy. Herein, we evaluate the efficiency of an adenovirus-vectored vaccine (chimpanzee ChAdOx1 adenovirus, AZD1222) in boosting the specific immunity compared to that induced by a recombinant receptor-binding domain (RBD)-based vaccine without viral vector. Mice immunized with the AZD1222 human vaccine were given a booster 6 months later, with either the homologous vaccine or a recombinant vaccine based on RBD of the delta variant, which was prevalent at the start of this study. A significant increase in anti-RBD antibody levels was observed in rRBD-boosted mice (31-61%) compared to those receiving two doses of AZD1222 (0%). Significantly higher rates of PepMix™- or RBD-elicited proliferation were also observed in IFNγ-producing CD4 and CD8 cells from mice boosted with one or two doses of RBD, respectively. The lower efficiency of the ChAdOx1-S vaccine in boosting specific immunity could be the result of a pre-existing anti-vector immunity, induced by increased levels of anti-adenovirus antibodies found both in mice and humans. Taken together, these results point to the importance of avoiding the recurrent use of the same adenovirus vector in individuals with immunity and memory against them. It also illustrates the disadvantages of ChAdOx1 adenovirus-vectored vaccine with respect to recombinant protein vaccines, which can be used without restriction in vaccine-booster programs. KEY POINTS: • ChAdOx1 adenovirus vaccine (AZD1222) may not be effective in boosting anti-SARS-CoV-2 immunity • A recombinant RBD protein vaccine is effective in boosting anti-SARS-CoV-2 immunity in mice • Antibodies elicited by the rRBD-delta vaccine persisted for up to 3 months in mice.


Subject(s)
Adenovirus Vaccines , COVID-19 , Vaccines , Humans , Animals , Mice , Pan troglodytes , ChAdOx1 nCoV-19 , COVID-19 Vaccines/genetics , SARS-CoV-2 , COVID-19/prevention & control , Adenoviridae/genetics , Vaccination , Antibodies, Viral , Antibodies, Neutralizing
5.
Cancer Immunol Immunother ; 72(11): 3825-3838, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37736849

ABSTRACT

Breast cancer is the leading malignancy in women worldwide, both in terms of incidence and mortality. Triple-negative breast cancer (TNBC) is the type with the worst clinical outcomes and with fewer therapeutic options than other types of breast cancer. GK-1 is a peptide that in the experimental model of the metastatic 4T1 breast cancer has demonstrated anti-tumor and anti-metastatic properties. Herein, GK-1 (5 mg/kg, i.v.) weekly administrated not only decreases tumor growth and the number of lung macro-metastases but also lung and lymph nodes micro-metastases. Histological analysis reveals that GK-1 reduced 57% of the intra-tumor vascular areas, diminished the leukemoid reaction's progression, and the spleens' weight and length. A significant reduction in VEGF-C, SDF-1, angiopoietin-2, and endothelin-1 angiogenic factors was induced. Moreover, GK-1 prevents T cell exhaustion in the tumor-infiltrating lymphocytes (TILs) decreasing PD-1 expression. It also increased IFN-γ and granzyme-B expression and the cytotoxic activity of CD8+ TILs cells against tumor cells. All these features were found to be associated with a better antitumor response and prognosis. Altogether, these results reinforce the potential of GK-1 to improve the clinical outcome of triple-negative breast cancer immunotherapy. Translation research is ongoing towards its evaluation in humans.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Female , Animals , Mice , Triple Negative Breast Neoplasms/pathology , T-Cell Exhaustion , Lymphocytes, Tumor-Infiltrating/metabolism , Prognosis , Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/metabolism
6.
Pathogens ; 12(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37764924

ABSTRACT

Extraparenchymal neurocysticercosis (EP-NC) is a chronic, potentially life-threatening disease that responds poorly to initial anthelmintic drug therapy. A depressed specific reactivity of peripheral lymphocytes and an increased level of specific Tregs accompanies EP-NC. The immune checkpoint pathway PD-1 and its ligand PD-L1 downregulates effector T cells, causing specific immune suppression in chronic diseases. This study explored whether their soluble forms, sPD-1/sPD-L1, are present in plasma among patients with EP-NC and if their levels could be associated with treatment response. A total of 21 patients with vesicular EP-NC and 22 healthy controls were included. Patients received standard treatment and were followed for six months to assess treatment response by assessing changes in cyst volume determined with 3D MRI. The presence of both sPD-1 and sPD-L1 was more frequently detected among patients with EP-NC than in healthy controls and had higher concentrations. Among patients, higher pre-treatment levels of both markers were associated with a poor treatment response, and the sensitivity and specificity of the sPD-1/sPD-L1 ratio for predicting any response to treatment were high. Our results are consistent with the presence of lymphocyte exhaustion and open new research perspectives to improve the prognosis of patients with this severe disease.

7.
Brain Sci ; 13(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37508953

ABSTRACT

BACKGROUND: Neurocysticercosis (NCC) is endemic in non-developed regions of the world. Two forms of NCC have been described, for which neurological morbidity depends on the location of the lesion, which can be either within the cerebral parenchyma or in extraparenchymal spaces. The extraparenchymal form (EXP-NCC) is considered the most severe form of NCC. EXP-NCC often requires several cycles of cysticidal treatment and the concomitant use of glucocorticoids to prevent increased inflammation, which could lead to intracranial hypertension and, in rare cases, to death. Thus, the improvement of EXP-NCC treatment is greatly needed. METHODS: An experimental murine model of EXP-NCC, as an adequate model to evaluate new therapeutic approaches, and the parameters that support it are described. EXP-NCC was established by injecting 30 Taenia crassiceps cysticerci, which are less than 0.5 mm in diameter, into the cisterna magna of male and female Wistar rats. RESULTS: Cyst implantation and infection progression were monitored by detecting the HP10 antigen and anti-cysticercal antibodies in the serum and cerebral spinal fluid (CSF) of infected rats and by magnetic resonance imaging. Higher HP10 levels were observed in CSF than in the sera, as in the case of human EXP-NCC. Low cell recruitment levels were observed surrounding established cysticerci in histological analysis, with a modest increase in GFAP and Iba1 expression in the parenchyma of female animals. Low cellularity in CSF and low levels of C-reactive protein are consistent with a weak inflammatory response to this infection. After 150 days of infection, EXP-NCC is accompanied by reduced levels of mononuclear cell proliferation, resembling the human disease. EXP-NCC does not affect the behavior or general status of the rats. CONCLUSIONS: This model will allow the evaluation of new approaches to control neuroinflammation and immunomodulatory treatments to restore and improve the specific anti-cysticercal immunity in EXP-NCC.

8.
Parasitol Res ; 122(9): 2147-2154, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37428312

ABSTRACT

Neurocysticercosis is a heterogeneous disease, and the patient's sex seems to play a role in this heterogeneity. Hosts' sexual dimorphism in cysticercosis has been largely explored in the murine model of intraperitoneal Taenia crassiceps cysticercosis. In this study, we investigated the sexual dimorphism of inflammatory responses in a rat model of extraparenchymal neurocysticercosis caused by T. crassiceps. T. crassiceps cysticerci were inoculated in the subarachnoid space of Wistar rats (25 females, 22 males). Ninety days later, the rats were euthanized for histologic, immunohistochemistry, and cytokines studies. Ten animals also underwent a 7-T magnetic resonance imaging (MRI). Female rats presented a higher concentration of immune cells in the arachnoid-brain interface, reactive astrogliosis in the periventricular region, in situ pro-inflammatory cytokine (interleukin [IL]-6) and anti-inflammatory cytokine (IL-10), and more intense hydrocephalus on MRI than males. Intracranial hypertension signals were not observed during the observational period. Overall, these results suggest sexual dimorphism in the intracranial inflammatory response that accompanied T. crassiceps extraparenchymal neurocysticercosis.


Subject(s)
Cysticercosis , Neurocysticercosis , Taenia , Male , Mice , Female , Rats , Animals , Neurocysticercosis/diagnostic imaging , Neurocysticercosis/pathology , Disease Models, Animal , Sex Characteristics , Rats, Wistar , Cytokines , Interleukin-6 , Mice, Inbred BALB C
9.
Infect Immun ; 91(7): e0051722, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37341599

ABSTRACT

Parasitic diseases are a major public health problem worldwide. Plant-derived products appear to be ideal candidates from a biotechnological perspective, being sustainable and environmentally friendly. The antiparasitic properties of Carica papaya have been attributed to some of its components, including papain and other compounds that are concentrated in the latex and seeds. This study demonstrated in vitro a high and insignificantly different cysticidal activity of soluble extract that was obtained after the disruption of nontransformed wild-type (WT) cells as well as transformed papaya calluses (PC-9, PC-12, and PC-23) and papaya cell suspensions (CS-9, CS-12, and CS-23). In vivo, cell suspensions of CS-WT and CS-23 that had been previously lyophilized were tested with respect to their cysticidal effects, compared with those of three commercial antiparasitic drugs. CS-WT and CS-23 together reduced the number of cysticerci, the number of buds, and the percentage of calcified cysticerci in a similar extent to albendazole and niclosamide, whereas ivermectin was less effective. Mice were then orally immunized with CS-23 that expressed the anti-cysticercal KETc7 antigen (10 µg/mouse), CS-WT (10 mg/mouse), or both together to evaluate their preventive properties. CS-23 and CS-WT significantly reduced the expected parasite and increased the percentage of calcified cysticerci as well as recovery, being more effective when employed together. The results reported in this study support the feasibility of the development of an anti-cysticercosis vaccine from cells of C. papaya in in vitro cultures, as they are a source of an anthelmintic, natural, and reproducible product.


Subject(s)
Carica , Mice , Animals , Suspensions , Albendazole , Plant Extracts/pharmacology , Seeds
10.
PLoS Negl Trop Dis ; 17(6): e0011386, 2023 06.
Article in English | MEDLINE | ID: mdl-37262055

ABSTRACT

BACKGROUND: The morbidity and mortality of extraparenchymal neurocysticercosis (EP-NC) remain high and effectiveness of current medical treatment is suboptimal. Various factors have been implicated in the severity of EP-NC and in the poor response to treatment, but the possible role of host immune and endocrine systems has not yet been examined thoroughly. METHODOLOGY/PRINCIPAL FINDINGS: 42 participants with EP-NC before receiving standard treatment and 25 healthy controls were included in the study. Treatment response was assessed by comparing pre/post treatment parasite volumes from 3D MRI. Prior to treatment among participants with EP-NC, specific stimulation induced an increased specific proliferative response accompanied by a significant increase in IL-4, NK, NKT, Bregs and Tregs cells, whereas in healthy controls, specific stimulation induced a significant increase in IL-1ß, IL-5, CCL5, IL-6, TNF-α, NK and Bregs cells. Significant differences between participants with EP-NC and healthy controls in the specific inflammatory response were observed. Participants with EP-NC prior to treatment had significantly weaker responses of proinflammatory cytokines (IL-6, TNF-α) and NK cells, and stronger IL-4 response. Anthelmintic treatment did not promote significant peripheral immunological changes at any time, although inflammation was sustained in the cerebrospinal fluid. Serum estradiol concentration significantly decreased after anthelmintic treatment among males, and cortisol correlated negatively with IL-6 and positively with IFN-γ levels. No pre-treatment immunologic or endocrinologic parameters were significantly associated with response to treatment. CONCLUSION/SIGNIFICANCE: Prior to anthelmintic treatment, EP-NC was characterized by low lymphocyte reactivity accompanied by a regulatory response, which may be involved in the lack of peripheral immunological changes during and after treatment, although a central inflammatory response was present. This weak specific peripheral response could favor the chronicity of the infection and the poor response to treatment. Our findings highlight the need for new anti-inflammatory treatment focused on the central nervous system with less systemic immunosuppressive effects.


Subject(s)
Neurocysticercosis , Male , Humans , Neurocysticercosis/drug therapy , Tumor Necrosis Factor-alpha , Interleukin-4 , Interleukin-6 , Cytokines , Killer Cells, Natural
11.
Exp Parasitol ; 250: 108529, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37015309

ABSTRACT

Neurocysticercosis, caused by the larval stage of Taenia solium, is a life-threatening condition and the most severe form of the disease. Yet, despite being a required link in the parasite life cycle, tapeworm carriers are rarely reported. This study is aimed to find and evaluate T. solium carriers, describing some characteristics of these patients and the treatment. Taeniasis cases were searched for in various Mexican states from 1983 to 2016. Previous informed consent, tapeworm-carrier patients were administered with niclosamide and a saline purge. Parasite specimens were recovered and identified, both morphologically and by PCR. From 117 treated patients, Taenia sp. specimens were obtained from 46 subjects (47.8%). From these, complete parasites were recovered from 42 (90.5%), and only detached proglottids from 4 patients. Cases were more frequent in Morelos, Chiapas, and Guerrero. More than one adult cestode was recovered from 4 patients (9.5%). To improve treatment efficacy and adherence, the drug was administered in late afternoon, resulting a high recovery yield of complete parasites (90.5%). The success rate of deworming campaigns in areas of Mexico and the world that are endemic for Taenia sp. could be improved by administering the treatment at times that do not interfere with the patients' daily activities, and national health authorities could apply this simple strategy to help eradication efforts in endemic areas. The detection of carriers will only be possible through the coordinated efforts of public and private health services, a better education of the general population to improve self-detection, and adequate, personalized diagnostic procedures for suspect cases.


Subject(s)
Cestode Infections , Cysticercosis , Neurocysticercosis , Taenia solium , Taeniasis , Adult , Animals , Humans , Feces/parasitology , Taeniasis/diagnosis , Taeniasis/drug therapy , Taeniasis/epidemiology , Neurocysticercosis/diagnosis , Neurocysticercosis/drug therapy , Neurocysticercosis/epidemiology , Taenia solium/genetics , Cysticercosis/diagnosis
12.
Phytother Res ; 37(8): 3394-3407, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37012651

ABSTRACT

Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor; therefore, TNBC lacks targeted therapy, and chemotherapy is the only available treatment for this illness but causes side effects. A putative strategy for the treatment of TNBC could be the use of the polyphenols such as α-Mangostin (α-M), which has shown anticancerogenic effects in different cancer models and can modulate the inflammatory and prooxidant state in several pathological models. The redox state, oxidative stress (OS), and oxidative damage are highly related to cancer development and its treatment. Thus, this study aimed to evaluate the effects of α-M on redox state, mitochondrial metabolism, and apoptosis in 4T1 mammary carcinoma cells. We found that α-M decreases both protein levels and enzymatic activity of catalase, and increases reactive oxygen species, oxidized proteins and glutathione disulfide, which demonstrates that α-M induces oxidative damage. We also found that α-M promotes mitochondrial dysfunction by abating basal respiration, the respiration ligated to oxidative phosphorylation (OXPHOS), and the rate control of whole 4T1 cells. Additionally, α-M also decreases the levels of OXPHOS subunits of mitochondrial complexes I, II, III, and adenosine triphosphate synthase, the activity of mitochondrial complex I as well as the levels of peroxisome proliferator-activated receptor-gamma co-activator 1α, showing a mitochondrial mass reduction. Then, oxidative damage and mitochondrial dysfunction induced by α-M induce apoptosis of 4T1 cells, which is evidenced by B cell lymphoma 2 decrease and caspase 3 cleavage. Taken together, our results suggest that α-M induces OS and mitochondrial dysfunction, resulting in 4T1 cell death through apoptotic mechanisms.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Oxidative Stress , Reactive Oxygen Species/metabolism , Apoptosis , Mitochondria
13.
Pathog Glob Health ; 117(1): 5-13, 2023 02.
Article in English | MEDLINE | ID: mdl-35657099

ABSTRACT

In Guatemala, neurocysticercosis (NCC) was first recognized in 1940; since then, cases of NCC have been reported in all Guatemalan departments. However, epidemiological studies on Taenia solium infections are scarce and most information remains unpublished. This study aims to provide evidence of T. solium infections as a public health problem in Guatemala. All information available, either published or unpublished, on T. solium infections in the country was compiled. Official data from the Ministry of Health for the period 2003-2019 were reviewed and analyzed, and all cases of T. solium infections were classified and counted. In total, 5246 cases of taeniasis and 454 cases of human cysticercosis were recorded. On the other hand, 44 studies were identified, mostly from local journals, which included 1951 cases of taeniasis, 2873 cases of human cysticercosis of which 543 were classified with complete diagnosis, and 2590 cases of porcine cysticercosis. Cases were classified by geographic region, patient sex, and Taenia species in taeniasis cases when information was available, and the departments with the highest number of taeniasis and cysticercosis cases were identified. Meanwhile, in Zacapa, a northeastern department of Guatemala with one the highest number of taeniasis cases, a young man diagnosed with a severe form of NCC and two cases of porcine cysticercosis (both confirmed by necropsy) were identified. Taken together, the data herein reported indicate that T. solium infections are a major health problem in Guatemala that needs to be addressed.


Subject(s)
Cysticercosis , Neurocysticercosis , Taenia solium , Taeniasis , Male , Humans , Animals , Swine , Public Health , Guatemala/epidemiology , Cysticercosis/epidemiology , Taeniasis/epidemiology , Taeniasis/diagnosis , Neurocysticercosis/epidemiology
14.
Vaccine ; 40(45): 6489-6498, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36195474

ABSTRACT

The rapid spread of COVID-19 on all continents and the mortality induced by SARS-CoV-2 virus, the cause of the pandemic coronavirus disease 2019 (COVID-19) has motivated an unprecedented effort for vaccine development. Inactivated viruses as well as vaccines focused on the partial or total sequence of the Spike protein using different novel platforms such us RNA, DNA, proteins, and non-replicating viral vectors have been developed. The high global need for vaccines, now and in the future, and the emergence of new variants of concern still requires development of accessible vaccines that can be adapted according to the most prevalent variants in the respective regions. Here, we describe the immunogenic properties of a group of theoretically predicted RBD peptides to be used as the first step towards the development of an effective, safe and low-cost epitope-focused vaccine. One of the tested peptides named P5, proved to be safe and immunogenic. Subcutaneous administration of the peptide, formulated with alumina, induced high levels of specific IgG antibodies in mice and hamsters, as well as an increase of IFN-γ expression by CD8+ T cells in C57 and BALB/c mice upon in vitro stimulation with P5. Neutralizing titers of anti-P5 antibodies, however, were disappointingly low, a deficiency that we will attempt to resolve by the inclusion of additional immunogenic epitopes to P5. The safety and immunogenicity data reported in this study support the use of this peptide as a starting point for the design of an epitope restricted vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Cricetinae , Humans , Mice , Animals , SARS-CoV-2 , Epitopes , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Viral , Immunoglobulin G , Peptides , RNA , Aluminum Oxide , Antibodies, Neutralizing
15.
Front Cell Infect Microbiol ; 12: 958741, 2022.
Article in English | MEDLINE | ID: mdl-36159651

ABSTRACT

Parasitic diseases have a major impact on human and animal health worldwide. Despite the availability of effective anti-parasitic drugs, their excessive and uncontrolled use has promoted the emergence of drug resistance, severely affecting ecosystems and human health. Thus, developing environmentally friendly antiparasitic treatments is urgently needed. Carica papaya has shown promising effects against infectious diseases. C. papaya embryogenic calluses were genetically modified by our research team to insert immunogenic peptides with the goal of developing an oral anti-cysticercosis vaccine. Among these callus cell lines, one labeled as CF-23, which expresses the KETc7 immunogenic peptide, induced the highest protection levels against experimental cysticercosis. In the process of designing a natural antiparasitic product based on C. papaya that simultaneously induced immunity against cysticercosis, both transformed (SF-23) and untransformed (SF-WT) suspension cultures were produced and optimized. Our results showed a better duplication time (td) for SF-23 (6.9 days) than SF-WT (13.02 days); thus, the SF-23 line was selected for scale-up in a 2-L airlift bioreactor, reaching a td of 4.4 days. This is the first time that a transgenic line of C. papaya has been grown in an airlift bioreactor, highlighting its potential for scale-up cultivation in this type of reactor. Considering the previously reported nematocidal activity of C. papaya tissues, their activity against the nematode Haemonchus contortus of aqueous extracts of SF-WT and SF-23 was explored in this study, with promising results. The information herein reported will allow us to continue the cultivation of the transgenic cell suspension line of C. papaya under reproducible conditions, to develop a new anti-parasitic product.


Subject(s)
Carica , Haemonchus , Animals , Antiparasitic Agents/pharmacology , Carica/genetics , Cell Line , Ecosystem , Haemonchus/genetics , Humans , Plants, Genetically Modified
16.
Arch Biochem Biophys ; 730: 109414, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36174750

ABSTRACT

Cancer, a major public health problem, is the fourth cause of death in the world. While cancer mortality has decreased in recent decades due to more effective treatments, mostly based on improving antitumor immunity, some forms of cancer are resistant to these immunotherapies. A promising approach for cancer treatment involves the administration of antitumor and immunomodulatory peptides. Immunomodulatory peptides have been proved to exert antitumor and immunomodulatory effects by activating immune cells such as cytotoxic T cells, with fewer side-effects. A process closely related to the regulation of the immune system by immunomodulatory antitumor peptides is the modulation of the redox state, which has been poorly studied. This review focuses on the redox state regulated by antitumor and immunomodulatory peptides in cancer development, and on the potential of redox state as a therapy associated with these peptides in cancer treatment.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Immunotherapy , T-Lymphocytes, Cytotoxic , Peptides/therapeutic use , Oxidation-Reduction
17.
Diagnostics (Basel) ; 12(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35885534

ABSTRACT

After more than two years, the COVID-19 pandemic is still ongoing and evolving all over the world; human herd immunity against SARS-CoV-2 increases either by infection or by unprecedented mass vaccination. A substantial change in population immunity is expected to contribute to the control of transmission. It is essential to monitor the extension and duration of the population's immunity to support the decisions of health authorities in each region and country, directed to chart the progressive return to normality. For this purpose, the availability of simple and cheap methods to monitor the levels of relevant antibodies in the population is a widespread necessity. Here, we describe the development of an RBD-based ELISA for the detection of specific antibodies in large numbers of samples. The recombinant expression of an RBD-poly-His fragment was carried out using either bacterial or eukaryotic cells in in vitro culture. After affinity chromatography purification, the performance of both recombinant products was compared by ELISA in similar trials. Our results showed that eukaryotic RBD increased the sensitivity of the assay. Interestingly, our results also support a correlation of the eukaryotic RBD-based ELISA with other assays aimed to test for neutralizing antibodies, which suggests that it provides an indication of protective immunity against SARS-CoV-2.

18.
Pharmaceutics ; 14(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35745768

ABSTRACT

Inhalants are chemical substances that induce intoxication, and toluene is the main component of them. Increasing evidence indicates that a dependence on inhalants involves a state of chronic stress associated to the activation of immune cells in the central nervous system and release of proinflammatory mediators, especially in some brain areas such as the nucleus accumbens and frontal cortex, where the circuits of pleasure and reward are. In this study, anti-neuroinflammatory treatment based on a single dose of intranasal methylprednisolone was assessed in a murine model of chronic toluene exposure. The levels of proinflammatory mediators, expression levels of Iba-1 and GFAP, and histological changes in the frontal cortex and nucleus accumbens were evaluated after the treatment. The chronic exposure to toluene significantly increased the levels of TNF-α, IL-6, and NO, the expression of GFAP, and induced histological alterations in mouse brains. The treatment with intranasally administered MP significantly reduced the expression of TNF-α and NO and the expression of GFAP (p < 0.05); additionally, it reversed the central histological damage. These results indicate that intranasally administered methylprednisolone could be considered as a treatment to reverse neuroinflammation and histological damages associated with the use of inhalants.

19.
Curr Opin Pharmacol ; 63: 102181, 2022 04.
Article in English | MEDLINE | ID: mdl-35074661

ABSTRACT

Peripheral inflammation and neuroinflammation are host-mounted to eliminate injury, infection, or toxin to restore homeostasis. However, when inflammation persists, it may promote collateral tissue damage that ultimately culminates in pathological peripheral damage or neurodegeneration. Since the beginning of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, responsible of Coronavirus disease 2019 (COVID-19), accumulating evidence describes neurological manifestations and complications worldwide particularly in approximately one-third of patients with COVID-19 particularly in those affected with the severe forms of the disease. Different access routes to the central nervous system have been identified. One immediately used is the entrance by the olfactory and trigeminus nervous affecting olfactory and sensory nerve endings when individuals get the infection by the intranasal route. It can also reach the central nervous system through the choroid plexuses and periventricular areas that lack blood-brain barrier or by its disruption by the exacerbated peripheral inflammation. Until now, the long-term sequelae of SARS-CoV-2 infection is still under research and the post-COVID syndrome. This review focuses on the consequences of the neuroinflammatory response in patients with COVID-19 considering its potential relevance in the appearance of neurological sequelae including neurodegenerative disorders.


Subject(s)
COVID-19 , Nervous System Diseases , COVID-19/complications , Humans , Inflammation/complications , Neuroinflammatory Diseases , Pandemics , SARS-CoV-2
20.
Antioxidants (Basel) ; 12(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36670920

ABSTRACT

Breast cancer (BC) is the second most common cancer worldwide in women. During the last decades, the mortality due to breast cancer has progressively decreased due to early diagnosis and the emergence of more effective new treatments. However, human epidermal growth factor receptor 2 (HER2) and triple-negative breast cancer (TNBC) remain with poor prognoses. In our research group, we are proposing the GK-1 immunomodulatory peptide as a new alternative for immunotherapy of these aggressive tumors. GK-1 reduced the growth rate of established tumors and effectively reduced lung metastasis in the 4T1 experimental murine model of breast cancer. Herein, the effect of GK-1 on the redox state, mitochondrial metabolism, and autophagy of triple-negative tumors that can be linked to cancer evolution was studied. GK-1 decreased catalase activity, reduced glutathione (GSH) content and GSH/oxidized glutathione (GSSG) ratio while increased hydrogen peroxide (H2O2) production, GSSG, and protein carbonyl content, inducing oxidative stress (OS) in tumoral tissues. This imbalance between reactive oxygen species (ROS) and antioxidants was related to mitochondrial dysfunction and uncoupling, characterized by reduced mitochondrial respiratory parameters and dissipation of mitochondrial membrane potential (ΔΨm), respectively. Furthermore, GK-1 likely affected autophagy flux, confirmed by elevated levels of p62, a marker of autophagy flux. Overall, the induction of OS, dysfunction, and uncoupling of the mitochondria and the reduction of autophagy could be molecular mechanisms that underlie the reduction of the 4T1 breast cancer induced by GK-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...