Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38293175

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) can progress to cirrhosis and liver cancer. There are no approved medical therapies to prevent or reverse disease progression. Fructose and its metabolism in the liver play integral roles in MASH pathogenesis and progression. Here we focus on mannose, a simple sugar, which dampens hepatic stellate cell activation and mitigates alcoholic liver disease in vitro and in vivo . In the well-validated FAT-MASH murine model, oral mannose supplementation improved both liver steatosis and fibrosis at low and high doses, whether administered either at the onset of the model ("Prevention") or at week 6 of the 12-week MASH regimen ("Reversal"). The in vivo anti-fibrotic effects of mannose supplementation were validated in a second model of carbon tetrachloride-induced liver fibrosis. In vitro human and mouse primary hepatocytes revealed that the anti-steatotic effects of mannose are dependent on the presence of fructose, which attenuates expression of ketohexokinase (KHK), the main enzyme in fructolysis. KHK is decreased with mannose supplementation in vivo and in vitro, and overexpression of KHK abrogated the anti-steatotic effects of mannose. Our study identifies mannose as a simple, novel therapeutic candidate for MASH that mitigates metabolic dysregulation and exerts anti-fibrotic effects.

2.
Microbiol Spectr ; 11(4): e0323422, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37347180

ABSTRACT

SARS-CoV-2 seroprevalence studies are instrumental in monitoring epidemic activity and require well-characterized, high-throughput assays, and appropriate testing algorithms. The U.S. Nationwide Blood Donor Seroprevalence Study performed monthly cross-sectional serological testing from July 2020 to December 2021, implementing evolving testing algorithms in response to changes in pandemic activity. With high vaccine uptake, anti-Spike (S) reactivity rates reached >80% by May 2021, and the study pivoted from reflex Roche anti-nucleocapsid (NC) testing of Ortho S-reactive specimens to parallel Ortho S/NC testing. We evaluated the performance of the Ortho NC assay as a replacement for the Roche NC assay and compared performance of parallel S/NC testing on both platforms. Qualitative and quantitative agreement of Ortho NC with Roche NC assays was evaluated on preselected S/NC concordant and discordant specimens. All 190 Ortho S+/Roche NC+ specimens were reactive on the Ortho NC assay; 34% of 367 Ortho S+/Roche NC- specimens collected prior to vaccine availability and 43% of 37 Ortho S-/Roche NC+ specimens were reactive on the Ortho NC assay. Performance of parallel S/NC testing using Ortho and Roche platforms was evaluated on 200 specimens collected in 2019 and 3,903 study specimens collected in 2021. All 200 pre-COVID-19 specimens tested negative on the four assays. Cross-platform agreement between Roche and Ortho platforms was 96.4% (3,769/3,903); most discordant results had reactivity close to the cutoffs on the alternate assays. These findings, and higher efficiency and throughput, support the use of parallel S/NC testing on either Roche or Ortho platforms for large serosurveillance studies. IMPORTANCE Seroprevalence studies like the U.S. Nationwide Blood Donor Seroprevalence Study (NBDS) have been critical in monitoring SARS-CoV-2 epidemic activity. These studies rely on serological assays to detect antibodies indicating prior infection. It is critical that the assays and testing algorithms used in seroprevalence studies have adequate performance (high sensitivity, high specificity, ability to discriminate vaccine-induced and infection-induced antibodies, etc.), as well as appropriate characteristics to support large-scale studies, such as high throughput and low cost. In this study we evaluated the performance of Ortho's anti-nucleocapsid assay as a replacement for the Roche anti-nucleocapsid assay and compared performance of parallel anti-spike and anti-nucleocapsid testing on both platforms. These data demonstrate similar performance of the Ortho and Roche anti-nucleocapsid assays and that parallel anti-spike and anti-nucleocapsid testing on either platform could be used for serosurveillance applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Cross-Sectional Studies , Seroepidemiologic Studies , Antibodies, Viral , Immunoassay/methods , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...