Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 59(2): 380-390, 2018 02.
Article in English | MEDLINE | ID: mdl-29229740

ABSTRACT

The group IVA calcium-dependent cytosolic phospholipase A2 (cPLA2α) enzyme directs a complex "eicosanoid storm" that accompanies the tissue response to injury. cPLA2α and its downstream eicosanoid mediators are also implicated in the pathogenesis of fibrosis in many organs, including the kidney. We aimed to determine the role of cPLA2α in bone marrow-derived cells in a murine model of renal fibrosis, unilateral ureteral obstruction (UUO). WT C57BL/6J mice were irradiated and engrafted with donor bone marrow from either WT mice [WT-bone marrow transplant (BMT)] or mice deficient in cPLA2α (KO-BMT). After full engraftment, mice underwent UUO and kidneys were collected 3, 7, and 14 days after injury. Using picrosirius red, collagen-3, and smooth muscle α actin staining, we determined that renal fibrosis was significantly attenuated in KO-BMT animals as compared with WT-BMT animals. Lipidomic analysis of homogenized kidneys demonstrated a time-dependent upregulation of pro-inflammatory eicosanoids after UUO; KO-BMT animals had lower levels of many of these eicosanoids. KO-BMT animals also had fewer infiltrating pro-inflammatory CD45+CD11b+Ly6Chi macrophages and reduced message levels of pro-inflammatory cytokines. Our results indicate that cPLA2α and/or its downstream mediators, produced by bone marrow-derived cells, play a major role in eicosanoid production after renal injury and in renal fibrinogenesis.


Subject(s)
Bone Marrow/metabolism , Group IV Phospholipases A2/metabolism , Kidney Diseases/metabolism , Ureteral Obstruction/metabolism , Animals , Fibrosis/metabolism , Fibrosis/pathology , Group IV Phospholipases A2/deficiency , Group IV Phospholipases A2/genetics , Kidney Diseases/pathology , Mice , Mice, Inbred C57BL , Ureteral Obstruction/pathology
2.
J Bacteriol ; 199(23)2017 12 01.
Article in English | MEDLINE | ID: mdl-28874407

ABSTRACT

Mycobacterium tuberculosis is a strict aerobe capable of prolonged survival in the absence of oxygen. We investigated the ability of anaerobic M. tuberculosis to counter challenges to internal pH homeostasis in the absence of aerobic respiration, the primary mechanism of proton efflux for aerobic bacilli. Anaerobic M. tuberculosis populations were markedly impaired for survival under a mildly acidic pH relative to standard culture conditions. An acidic environmental pH greatly increased the susceptibilities of anaerobic bacilli to the collapse of the proton motive force by protonophores, to antimicrobial compounds that target entry into the electron transport system, and to small organic acids with uncoupling activity. However, anaerobic bacilli exhibited high tolerance against these challenges at a near-neutral pH. At a slightly alkaline pH, which was near the optimum intracellular pH, the addition of protonophores even improved the long-term survival of bacilli. Although anaerobic M. tuberculosis bacilli under acidic conditions maintained 40% lower ATP levels than those of bacilli under standard culture conditions, ATP loss alone could not explain the drop in viability. Protonophores decreased ATP levels by more than 90% regardless of the extracellular pH but were bactericidal only under acidic conditions, indicating that anaerobic bacilli could survive an extreme ATP loss provided that the external pH was within viable intracellular parameters. Acidic conditions drastically decreased the anaerobic survival of a DosR mutant, while an alkaline environment improved the survival of the DosR mutant. Together, these findings indicate that intracellular acidification is a primary challenge for the survival of anaerobic M. tuberculosis and that the DosR regulon plays a critical role in sustaining internal pH homeostasis.IMPORTANCE During infection, M. tuberculosis bacilli are prevalent in environments largely devoid of oxygen, yet the factors that influence the survival of these severely growth-limited and metabolically limited bacilli remain poorly understood. We determined how anaerobic bacilli respond to fluctuations in environmental pH and observed that these bacilli were highly susceptible to stresses that promoted internal acidic stress, whereas conditions that promoted an alkaline internal pH promoted long-term survival even during severe ATP depletion. The DosR regulon, a major regulator of general hypoxic stress, played an important role in maintaining internal pH homeostasis under anaerobic conditions. Together, these findings indicate that in the absence of aerobic respiration, protection from internal acidification is crucial for long-term M. tuberculosis survival.


Subject(s)
Bacteria, Anaerobic/metabolism , Bacteria, Anaerobic/physiology , Bacterial Proteins/metabolism , Cell Death/physiology , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/physiology , Regulon/physiology , Adenosine Triphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus/metabolism , Bacillus/physiology , Cell Respiration/physiology , Electron Transport/physiology , Homeostasis/physiology , Hydrogen-Ion Concentration , Mycobacterium tuberculosis/drug effects , Oxygen/metabolism
3.
Article in English | MEDLINE | ID: mdl-27554058

ABSTRACT

The group IVA calcium-dependent cytosolic phospholipase A2 (cPLA2α) enzyme controls the release of arachidonic acid from membrane bound phospholipids and is the rate-limiting step in production of eicosanoids. A variety of different kidney injuries activate cPLA2α, therefore we hypothesized that cPLA2α activity would regulate pathologic processes in HK-2 cells, a human renal tubular epithelial cell line, by regulating cell phenotype and proliferation. In two lentiviral cPLA2α-silenced knockdowns, we observed decreased proliferation and increased apoptosis compared to control HK-2 cells. cPLA2α-silenced cells also demonstrated an altered morphology, had increased expression E-cadherin, and decreased expression of Ncadherin. Increased levels of E-cadherin were associated with increased promoter activity and decreased levels of SNAIL1, SNAIL2, and ZEB1, transcriptional repressors of E-cadherin expression. Addition of exogenous arachidonic acid, but not PGE2, reversed the phenotypic changes in cPLA2α-silenced cells. These data suggest that cPLA2α may play a key role in renal repair after injury through a PGE2-independent mechanism.


Subject(s)
Cell Dedifferentiation , Epithelial Cells/cytology , Group IV Phospholipases A2/metabolism , Kidney Tubules/cytology , Arachidonic Acid/pharmacology , Cadherins/genetics , Cell Dedifferentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Dinoprostone/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Silencing , Group IV Phospholipases A2/deficiency , Group IV Phospholipases A2/genetics , Humans , Phenotype , Promoter Regions, Genetic/genetics
4.
Vaccine ; 31(24): 2667-72, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23602665

ABSTRACT

Shigellosis is an important diarrheal disease, especially among children in the developing world. About 90 million infections with Shigella spp are estimated to appear each year. We previously demonstrated that the type III secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens when administered intranasally using the mouse lethal pulmonary model. To simplify vaccine administration, we tested the parenteral route for IpaB and IpaD with several adjuvants and compared the immune response and protective efficacy via the intranasal route. We found that the intramuscular administration generated a response consisting of similar levels of serum IgG, a lack of IgA response and higher IL-17 secretion. Therefore, while parenteral administration yielded a unique pattern of immune responses, it retained the ability to protect mice in a lethal pulmonary challenge against S. flexneri when both proteins were used. Our results show the feasibility of generating protective parenteral vaccines against Shigella spp.


Subject(s)
Dysentery, Bacillary/prevention & control , Lung Diseases/prevention & control , Shigella Vaccines/administration & dosage , Shigella flexneri/immunology , Administration, Intranasal , Animals , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Dysentery, Bacillary/immunology , Feces/chemistry , Female , Humans , Immunoglobulin A/biosynthesis , Immunoglobulin A/immunology , Immunoglobulin G/blood , Injections, Intramuscular , Interleukin-17/immunology , Lung Diseases/immunology , Lung Diseases/microbiology , Mice , Mice, Inbred BALB C , Shigella Vaccines/immunology , Spleen/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...