Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38915268

ABSTRACT

Considering the growing age of the world population, the incidence of epilepsy in older adults is expected to increase significantly. It has been suggested that late-onset temporal lobe epilepsy (LO-TLE) may be neurodegenerative in origin and overlap with Alzheimer's Disease (AD). Herein, we aimed to characterize the pattern of cortical atrophy and cerebrospinal fluid (CSF) biomarkers of AD (total and phosphorylated tau, and ß-amyloid) in a selected population of LO-TLE of unknown origin. We prospectively enrolled individuals with temporal lobe epilepsy onset after the age of 50 and no cognitive impairment. They underwent a structural MRI scan and CSF biomarkers measurement. Imaging and biomarkers data were compared to three retrospectively collected groups: (i) age-sex-matched healthy controls, (ii) patients with Mild Cognitive Impairment (MCI) and abnormal CSF AD biomarkers (MCI-AD), and (iii) patients with MCI and normal CSF AD biomarkers (MCI-noAD). From a pool of 52 patients, twenty consecutive eligible LO-TLE patients with a mean disease duration of 1.8 years were recruited. As control populations, 25 patients with MCI-AD, 25 patients with MCI-noAD, and 25 healthy controls were enrolled. CSF biomarkers returned normal values in LO-TLE, significantly different from patients with MCI due to AD. There were no differences in cortico-subcortical atrophy between epilepsy patients and healthy controls, while patients with MCI demonstrated widespread injuries of cortico-subcortical structures. Individuals with a late-onset form of temporal lobe epilepsy, characterized by short disease duration and normal CSF ß-amyloid and tau protein levels, showed patterns of cortical thickness and subcortical volumes not significantly different from healthy controls, but highly different from patients with MCI, either due to Alzheimer's Disease or not.

3.
Ann Clin Transl Neurol ; 11(1): 121-132, 2024 01.
Article in English | MEDLINE | ID: mdl-37936526

ABSTRACT

OBJECTIVE: Ictal central apnea (ICA) is a frequent correlate of focal seizures, particularly in temporal lobe epilepsy (TLE), and regarded as a potential electroclinical biomarker of sudden unexpected death in epilepsy (SUDEP). Aims of this study are to investigate morphometric changes of subcortical structures in ICA patients and to find neuroimaging biomarkers of ICA in patients with focal epilepsy. METHODS: We prospectively recruited focal epilepsy patients with recorded seizures during a video-EEG long-term monitoring with cardiorespiratory polygraphic recordings from April 2020 to September 2022. Participants were accordingly subdivided into two groups: patients with focal seizures with ICA (ICA) and without (noICA). A pool of 30 controls matched by age and sex was collected. All the participants underwent MRI scans with volumetric high-resolution T1-weighted images. Post-processing analyses included a whole-brain VBM analysis and segmentation algorithms performed with FreeSurfer. RESULTS: Forty-six patients were recruited (aged 15-60 years): 16 ICA and 30 noICA. The whole-brain VBM analysis showed an increased gray matter volume of the amygdala ipsilateral to the epileptogenic zone (EZ) in the ICA group compared to the noICA patients. Amygdala sub-segmentation analysis revealed an increased volume of the whole amygdala, ipsilateral to the EZ compared to controls [F(1, 76) = 5.383, pFDR = 0.042] and to noICA patients ([F(1, 76) = 5.383, pFDR = 0.038], specifically of the basolateral complex (respectively F(1, 76) = 6.160, pFDR = 0.037; F(1, 76) = 5.121, pFDR = 0.034). INTERPRETATION: Our findings, while confirming the key role of the amygdala in participating in ictal respiratory modifications, suggest that structural modifications of the amygdala and its subnuclei may be valuable morphological biomarkers of ICA.


Subject(s)
Epilepsies, Partial , Sleep Apnea, Central , Humans , Sleep Apnea, Central/diagnostic imaging , Amygdala/diagnostic imaging , Seizures , Brain , Magnetic Resonance Imaging/methods , Neuroimaging , Biomarkers
4.
Epilepsy Behav ; 145: 109342, 2023 08.
Article in English | MEDLINE | ID: mdl-37422935

ABSTRACT

Cognitive disruption is a debilitating comorbidity in Temporal Lobe Epilepsy (TLE). Despite recent advances, the amygdala is often neglected in studies that explore cognition in TLE. Amygdala subnuclei are differently engaged in TLE with hippocampal sclerosis (TLE-HS) compared to non-lesional TLE (TLE-MRIneg), with predominant atrophy in the first and increased volume in the latter. Herein, we aim to explore the relationship between the volumes of the amygdala and its substructures with respect to cognitive performances in a population of left-lateralized TLE with and without HS. Twenty-nine TLEs were recruited (14 TLE-HS; 15 TLE-MRIneg). After investigating the differences in the subcortical amygdalae and hippocampal volumes compared to a matched healthy control population, we explored the associations between the subnuclei of the amygdala and the hippocampal subfields with the cognitive scores in TLE patients, according to their etiology. In TLE-HS, a reduced volume of the basolateral and cortical amygdala complexes joined with whole hippocampal atrophy, was related to poorer scores in verbal memory tasks, while in TLE-MRIneg, poorer performances in attention and processing speed tasks were associated with a generalized amygdala enlargement, particularly of the basolateral and central complexes. The present findings extend our knowledge of amygdala involvement in cognition and suggest structural amygdala abnormalities as useful disease biomarkers in TLE.


Subject(s)
Epilepsy, Temporal Lobe , Hippocampal Sclerosis , Humans , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Magnetic Resonance Imaging/methods , Amygdala/diagnostic imaging , Amygdala/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Cognition , Atrophy/pathology , Sclerosis/pathology
5.
Epileptic Disord ; 25(1): 45-56, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36946331

ABSTRACT

OBJECTIVE: To evaluate in a real clinical scenario the impact of the ILAE-recommended "Harmonized neuroimaging of epilepsy structural sequences"- HARNESS protocol in patients affected by focal epilepsy. METHODS: We prospectively enrolled focal epilepsy patients who underwent a structural brain MRI between 2020 and 2021 at Modena University Hospital. For all patients, MRIs were: (a) acquired according to the HARNESS-MRI protocol (H-MRI); (b) reviewed by the same neuroradiology team. MRI outcomes measures were: the number of positive (diagnostic) and negative MRI; the type of radiological diagnosis classified in: (1) Hippocampal Sclerosis; (2) Malformations of cortical development (MCD); (3) Vascular malformations; (4) Glial scars; (5) Low-grade epilepsy-associated tumors; (6) Dual pathology. For each patient we verified for previous MRI (without HARNESS protocol, noH-MRI) and the presence of clinical information in the MRI request form. Then the measured outcomes were reviewed and compared as appropriate. RESULTS: A total of 131 patients with H-MRI were included in the study. 100 patients out from this cohort had at least one previous noH-MRI scan. Of those, 92/100 were acquired at the same Hospital than H-MRI and 71/92 on a 3T scanner. The HARNESS protocol revealed 81 (62%) positive and 50 (38%) negative MRI, and MCD was the most common diagnosis (60%). Among the entire pool of 100 noH-MRI, 36 resulted positive with a significant difference (p < .001) compared to H-MRI. Similar findings were observed when accounting for the expert radiologists (H-MRI = 57 positive; noH-MRI = 33, p < .001) and the scanner field strength (H-MRI 43 = positive, noH-MRI = 23, p < .001), while clinical information were more present in H-MRI (p < .002). SIGNIFICANCE: The adoption of a standardized and optimized MRI acquisition protocol together with adequate clinical information contribute to identify a higher number of potentially epileptogenic lesions (especially FCD) thus impacting concretely on the clinical management of patients with focal epilepsy.


Subject(s)
Epilepsies, Partial , Epilepsy , Malformations of Cortical Development , Humans , Prospective Studies , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/surgery , Epilepsies, Partial/pathology , Magnetic Resonance Imaging/methods , Neuroimaging , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...