Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10818, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402779

ABSTRACT

Dramatically increased levels of electromagnetic radiation in the environment have raised concerns over the potential health hazards of electromagnetic fields. Various biological effects of magnetic fields have been proposed. Despite decades of intensive research, the molecular mechanisms procuring cellular responses remain largely unknown. The current literature is conflicting with regards to evidence that magnetic fields affect functionality directly at the cellular level. Therefore, a search for potential direct cellular effects of magnetic fields represents a cornerstone that may propose an explanation for potential health hazards associated with magnetic fields. It has been proposed that autofluorescence of HeLa cells is magnetic field sensitive, relying on single-cell imaging kinetic measurements. Here, we investigate the magnetic field sensitivity of an endogenous autofluorescence in HeLa cells. Under the experimental conditions used, magnetic field sensitivity of an endogenous autofluorescence was not observed in HeLa cells. We present a number of arguments indicating why this is the case in the analysis of magnetic field effects based on the imaging of cellular autofluorescence decay. Our work indicates that new methods are required to elucidate the effects of magnetic fields at the cellular level.


Subject(s)
Electromagnetic Fields , Magnetic Fields , Humans , HeLa Cells
2.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36173379

ABSTRACT

FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.


Subject(s)
Cholesterol , Fibroblast Growth Factor 2 , Lipid Bilayers , Phosphatidylinositol 4,5-Diphosphate , Cell Membrane/metabolism , Cholesterol/metabolism , Fibroblast Growth Factor 2/metabolism , Lipid Bilayers/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism
3.
Biochim Biophys Acta Proteins Proteom ; 1870(4): 140767, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35144022

ABSTRACT

Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aß peptide, which is known to form senile plaques in Alzheimer's disease; ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aß, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.


Subject(s)
Amyloidosis , Diabetes Mellitus, Type 2 , Intrinsically Disordered Proteins , Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Amyloidosis/etiology , Diabetes Mellitus, Type 2/metabolism , Humans , Intrinsically Disordered Proteins/chemistry , Lipids , Molecular Chaperones , Peptides , alpha-Synuclein/chemistry
4.
Front Chem ; 9: 738350, 2021.
Article in English | MEDLINE | ID: mdl-34778202

ABSTRACT

The organization of biomolecules and bioassemblies is highly governed by the nature and extent of their interactions with water. These interactions are of high intricacy and a broad range of methods based on various principles have been introduced to characterize them. As these methods view the hydration phenomena differently (e.g., in terms of time and length scales), a detailed insight in each particular technique is to promote the overall understanding of the stunning "hydration world." In this prospective mini-review we therefore critically examine time-dependent fluorescence shift (TDFS)-an experimental method with a high potential for studying the hydration in the biological systems. We demonstrate that TDFS is very useful especially for phospholipid bilayers for mapping the interfacial region formed by the hydrated lipid headgroups. TDFS, when properly applied, reports on the degree of hydration and mobility of the hydrated phospholipid segments in the close vicinity of the fluorophore embedded in the bilayer. Here, the interpretation of the recorded TDFS parameters are thoroughly discussed, also in the context of the findings obtained by other experimental techniques addressing the hydration phenomena (e.g., molecular dynamics simulations, NMR spectroscopy, scattering techniques, etc.). The differences in the interpretations of TDFS outputs between phospholipid biomembranes and proteins are also addressed. Additionally, prerequisites for the successful TDFS application are presented (i.e., the proper choice of fluorescence dye for TDFS studies, and TDFS instrumentation). Finally, the effects of ions and oxidized phospholipids on the bilayer organization and headgroup packing viewed from TDFS perspective are presented as application examples.

5.
ACS Chem Neurosci ; 11(24): 4336-4350, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33269918

ABSTRACT

An increasing number of human diseases has been shown to be linked to aggregation and amyloid formation by intrinsically disordered proteins (IDPs). Amylin, amyloid-ß, and α-synuclein are, indeed, involved in type-II diabetes, Alzheimer's, and Parkinson's, respectively. Despite the correlation of the toxicity of these proteins at early aggregation stages with membrane damage, the molecular events underlying the process is quite complex to understand. In this study, we demonstrate the crucial role of free lipids in the formation of lipid-protein complex, which enables an easy membrane insertion for amylin, amyloid-ß, and α-synuclein. Experimental results from a variety of biophysical methods and molecular dynamics results reveal that this common molecular pathway in membrane poration is shared by amyloidogenic (amylin, amyloid-ß, and α-synuclein) and nonamyloidogenic (rat IAPP, ß-synuclein) proteins. Based on these results, we propose a "lipid-chaperone" hypothesis as a unifying framework for protein-membrane poration.


Subject(s)
Intrinsically Disordered Proteins , Amyloid , Amyloidogenic Proteins , Animals , Islet Amyloid Polypeptide , Lipids , Rats , alpha-Synuclein
6.
Life (Basel) ; 10(8)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784399

ABSTRACT

Aß, IAPP, α-synuclein, and prion proteins belong to the amyloidogenic intrinsically disordered proteins' family; indeed, they lack well defined secondary and tertiary structures. It is generally acknowledged that they are involved, respectively, in Alzheimer's, Type II Diabetes Mellitus, Parkinson's, and Creutzfeldt-Jakob's diseases. The molecular mechanism of toxicity is under intense debate, as many hypotheses concerning the involvement of the amyloid and the toxic oligomers have been proposed. However, the main role is represented by the interplay of protein and the cell membrane. Thus, the understanding of the interaction mechanism at the molecular level is crucial to shed light on the dynamics driving this phenomenon. There are plenty of factors influencing the interaction as mentioned above, however, the overall view is made trickier by the apparent irreproducibility and inconsistency of the data reported in the literature. Here, we contextualized this topic in a historical, and even more importantly, in a future perspective. We introduce two novel insights: the chemical equilibrium, always established in the aqueous phase between the free and the membrane phospholipids, as mediators of protein-transport into the core of the bilayer, and the symmetry-breaking of oligomeric aggregates forming an alternating array of partially ordered and disordered monomers.

7.
J Phys Chem Lett ; 9(17): 5125-5129, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30133296

ABSTRACT

Amyloidogenic proteins are involved in many diseases, including Alzheimer's, Parkinson's, and type II diabetes. These proteins are thought to be toxic for cells because of their abnormal interaction with the cell membrane. Simpler model membranes (LUVs) have been used to study the early steps of membrane-protein interactions and their subsequent evolution. Phospholipid LUVs formed in water solution establish a chemical equilibrium between self-assembled LUVs and a small amount of phospholipids in water solution (CMC). Here, using both experimental and molecular dynamics simulations approach we demonstrate that the insertion of IAPP, an amyloidogenic peptide involved in diabetes, in membranes is driven by free lipids in solution in dynamic equilibrium with the self-assembled lipids of the bilayer. It is suggested that this could be a general mechanism lying at the root of membrane insertion processes of self-assembling peptides.

8.
Biochim Biophys Acta Biomembr ; 1860(9): 1625-1638, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29501606

ABSTRACT

Alzheimer's Disease (AD) and Type 2 diabetes mellitus (T2DM) are two incurable diseases both hallmarked by an abnormal deposition of the amyloidogenic peptides Aß and Islet Amyloid Polypeptide (IAPP) in affected tissues. Epidemiological data demonstrate that patients suffering from diabetes are at high risk of developing AD, thus making the search for factors common to the two pathologies of special interest for the design of new therapies. Accumulating evidence suggests that the toxic properties of both Aß or IAPP are ascribable to their ability to damage the cell membrane. However, the molecular details describing Aß or IAPP interaction with membranes are poorly understood. This review focuses on biophysical and in silico studies addressing these topics. Effects of calcium, cholesterol and membrane lipid composition in driving aberrant Aß or IAPP interaction with the membrane will be specifically considered. The cross correlation of all these factors appears to be a key issue not only to shed light in the countless and often controversial reports relative to this area but also to gain valuable insights into the central events leading to membrane damage caused by amyloidogenic peptides. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.

SELECTION OF CITATIONS
SEARCH DETAIL
...