Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Retin Eye Res ; 89: 101036, 2022 07.
Article in English | MEDLINE | ID: mdl-34954332

ABSTRACT

ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.


Subject(s)
ATP-Binding Cassette Transporters , Retinoids , Stargardt Disease , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Humans , Mutation , Retinoids/metabolism , Stargardt Disease/genetics
2.
Nat Commun ; 12(1): 5902, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625547

ABSTRACT

ABCA4 is an ATP-binding cassette (ABC) transporter that flips N-retinylidene-phosphatidylethanolamine (N-Ret-PE) from the lumen to the cytoplasmic leaflet of photoreceptor membranes. Loss-of-function mutations cause Stargardt disease (STGD1), a macular dystrophy associated with severe vision loss. To define the mechanisms underlying substrate binding and STGD1, we determine the cryo-EM structure of ABCA4 in its substrate-free and bound states. The two structures are similar and delineate an elongated protein with the two transmembrane domains (TMD) forming an outward facing conformation, extended and twisted exocytoplasmic domains (ECD), and closely opposed nucleotide binding domains. N-Ret-PE is wedged between the two TMDs and a loop from ECD1 within the lumen leaflet consistent with a lateral access mechanism and is stabilized through hydrophobic and ionic interactions with residues from the TMDs and ECDs. Our studies provide a framework for further elucidating the molecular mechanism associated with lipid transport and disease and developing promising disease interventions.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Cryoelectron Microscopy/methods , Stargardt Disease/metabolism , Binding Sites , Biological Transport , HEK293 Cells , Humans , Macular Degeneration/genetics , Mutation , Phosphatidylethanolamines , Protein Domains , Retinoids , Stargardt Disease/genetics
3.
J Mol Biol ; 433(23): 167279, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34624294

ABSTRACT

Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Peptide Elongation Factors/metabolism , RNA, Transfer, Amino Acid-Specific/metabolism , Selenocysteine/metabolism , Protein Binding , RNA, Messenger/genetics
4.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140438, 2020 08.
Article in English | MEDLINE | ID: mdl-32330624

ABSTRACT

tRNA synthetases are responsible for decoding the molecular information, from codons to amino acids. Seryl-tRNA synthetase (SerRS), besides the five isoacceptors of tRNASer, recognizes tRNA[Ser]Sec for the incorporation of selenocysteine (Sec, U) into selenoproteins. The selenocysteine synthesis pathway is known and is dependent on several protein-protein and protein-RNA interactions. Those interactions are not fully described, in particular, involving tRNA[Ser]Sec and SerRS. Here we describe the molecular interactions between the Escherichia coli Seryl-tRNA synthetase (EcSerRS) and tRNA[Ser]Sec in order to determine their specificity, selectivity and binding order, leading to tRNA aminoacylation. The dissociation constant of EcSerRS and tRNA[Ser]Sec was determined as (126 ± 20) nM. We also demonstrate that EcSerRS binds initially to tRNA[Ser]Sec in the presence of ATP for further recognition by E. coli selenocysteine synthetase (EcSelA) for Ser to Sec conversion. The proposed studies clarify the mechanism of tRNA[Ser]Sec incorporation in Bacteria as well as of other domains of life.


Subject(s)
Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , RNA, Transfer, Amino Acid-Specific/metabolism , RNA, Transfer, Cys/metabolism , Serine-tRNA Ligase/metabolism , Transferases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Escherichia coli/genetics , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Transfer, Amino Acid-Specific/genetics , RNA, Transfer, Cys/genetics , Serine-tRNA Ligase/genetics , Thermodynamics , Transfer RNA Aminoacylation/genetics , Transferases/genetics
6.
Amino Acids ; 50(9): 1145-1167, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29948343

ABSTRACT

Selenium (Se) is an essential trace element for several organisms and is mostly present in proteins as L-selenocysteine (Sec or U). Sec is synthesized on its L-seryl-tRNASec to produce Sec-tRNASec molecules by a dedicated selenocysteine synthesis machinery and incorporated into selenoproteins at specified in-frame UGA codons. UGA-Sec insertion is signaled by an mRNA stem-loop structure called the SElenoCysteine Insertion Sequence (SECIS). tRNASec transcription regulation and folding have been described showing its importance to Sec biosynthesis. Here, we discuss structural aspects of Sec-tRNASec and its role in Sec biosynthesis as well as Sec incorporation into selenoproteins. Defects in the Sec biosynthesis or incorporation pathway have been correlated with pathological conditions.


Subject(s)
RNA, Transfer, Cys/genetics , Selenocysteine/biosynthesis , Animals , Codon, Terminator/chemistry , Codon, Terminator/genetics , Codon, Terminator/metabolism , Humans , Protein Biosynthesis , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer, Cys/chemistry , RNA, Transfer, Cys/metabolism , Selenocysteine/genetics
7.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1326-1335, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28807888

ABSTRACT

The parasite Schistosoma mansoni possess all pathways for pyrimidine biosynthesis, whereby deaminases play an essential role in the thymidylate cycle, a crucial step to controlling the ratio between cytidine and uridine nucleotides. In this study, we heterologously expressed and purified the deoxycytidylate (dCMP) deaminase from S. mansoni to obtain structural, biochemical and kinetic information. Small-angle X-ray scattering of this enzyme showed that it is organized as a hexamer in solution. Isothermal titration calorimetry was used to determine the kinetic constants for dCMP-dUMP conversion and the role of dCTP and dTTP in enzymatic regulation. We evaluated the metals involved in activating the enzyme and show for the first time the dependence of correct folding on the interaction of two metals. This study provides information that may be useful for understanding the regulatory mechanisms involved in the metabolic pathways of S. mansoni. Thus, improving our understanding of the function of these essential pathways for parasite metabolism and showing for the first time the hitherto unknown deaminase function in this parasite.


Subject(s)
DCMP Deaminase/chemistry , Deoxycytosine Nucleotides/chemistry , Deoxyuracil Nucleotides/chemistry , Magnesium/chemistry , Protozoan Proteins/chemistry , Schistosoma mansoni/enzymology , Zinc/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cations, Divalent , Crystallography, X-Ray , DCMP Deaminase/genetics , DCMP Deaminase/metabolism , Deoxycytosine Nucleotides/metabolism , Deoxyuracil Nucleotides/metabolism , Gene Expression , Kinetics , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Schistosoma mansoni/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...