Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; : e2400233, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777345

ABSTRACT

The memory of crystalline phase in the melt of isotactic polypropylene (iPP) in regiodefective samples of iPP characterized by different concentrations regiodefects, constituted by secondary 2,1 propene units, is studied. The self-nucleation (SN) experiments have demonstrated that the presence of 2,1 regiodefects produces a strong memory of the crystalline phase in the melt that persists up to temperatures much higher than the melting temperature. The extension of the heterogeneous melt (domain II) containing self-nuclei increases with increasing the concentration of regiodefects. The higher the concentration of regiodefects the higher the temperature at which the self-nuclei are dissolved and the homogeneous melt is achieved. This demonstrates that a strong memory of the crystalline phase of iPP in the melt exists not only in copolymers with noncrystallizable bulky comonomeric units rejected from the crystals but even when small defects are largely included in the crystals.

2.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543012

ABSTRACT

The homogeneous non-catalytic hydrogenation of several types of iso- and syndiotactic cis-1,4 poly(1,3-diene)s with diimide, formed by thermal decomposition of p-toluene-sulfonyl-hydrazide, was examined. Perfectly alternating ethylene/1-alkene copolymers having different tacticity (i.e., isotactic and syndiotactic), which in some cases are difficult to synthesize by simple stereospecific co-polymerization of the corresponding monomers, were obtained. All the copolymers synthesized were fully characterized from a structural, morphological, and rheological point of view through different analytical techniques (FT-IR, NMR, GPC, DSC, RX).

3.
ACS Macro Lett ; 13(4): 407-414, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38526911

ABSTRACT

The precise use of a widely available and inexpensive metallocene catalyst enabled the synthesis of isotactic polypropylene copolymers characterized by the copresence of randomly distributed cyclic units in the backbone and unsaturated pendant units employing 1,5-hexadiene as comonomer. Optimization of the polymerization conditions avoided the cross-linking phenomena that negatively affects the material processing and final properties, resulting in good yields of samples featuring high molecular masses and a precisely controlled microstructure. Such polypropylene-based copolymers exhibit a broad spectrum of properties ranging from thermoplastic to surprising elastomeric behavior, with the additional value of being functionalizable by post-polymerization reactions.

4.
Macromolecules ; 56(15): 6173-6174, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576477

ABSTRACT

[This corrects the article DOI: 10.1021/acs.macromol.3c00710.].

5.
Science ; 380(6640): 64-69, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37023198

ABSTRACT

Polyhydroxyalkanoates (PHAs) have attracted increasing interest as sustainable plastics because of their biorenewability and biodegradability in the ambient environment. However, current semicrystalline PHAs face three long-standing challenges to broad commercial implementation and application: lack of melt processability, mechanical brittleness, and unrealized recyclability, the last of which is essential for achieving a circular plastics economy. Here we report a synthetic PHA platform that addresses the origin of thermal instability by eliminating α-hydrogens in the PHA repeat units and thus precluding facile cis-elimination during thermal degradation. This simple α,α-disubstitution in PHAs enhances the thermal stability so substantially that the PHAs become melt-processable. Synergistically, this structural modification also endows the PHAs with the mechanical toughness, intrinsic crystallinity, and closed-loop chemical recyclability.

6.
ChemSusChem ; 16(8): e202300008, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36638158

ABSTRACT

Technologically important thermosets face a long-standing end-of-life (EoL) problem of non-reprocessability, a more sustainable solution of which has resolved to nascent vitrimers that can merge the robust material properties of thermosets and the reprocessability of thermoplastics. However, the lifecycle of vitrimers is still finite, as they often suffer from significant deterioration of mechanical performance following multiple reprocessing cycles, analogous to mechanical recycling, and they often show undesired creep under working conditions. To address these two key limitations, we have developed a cross-linked semi-crystalline polythioester with both dynamic covalent bonds and intrinsic crystallinity and chemical recyclability, affording a vitrimeric system that exhibits not only reprocessability and crystallinity-restricted creep but also complete chemical recyclability to initial monomer by catalyzed depolymerization in solution or bulk. Therefore, reported herein is an "infinite" vitrimer system that is empowered with a facile closed-loop EoL option once serial reprocessing deteriorates performance and the material can no longer meet the application requirements. Specifically, the polythioester vitrimer was constructed by copolymerization of a bicyclic thioester with a bis-dithiolane, producing dynamically cross-linked polythioesters with excellent property tunability, from amorphous to semi-crystalline states and melting transition temperatures from 91 to 178 °C.

7.
Polymers (Basel) ; 14(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36235980

ABSTRACT

The crystallization behavior of random propene-octene isotactic copolymers (iPPC8) prepared with a homogeneous metallocene catalyst has been studied. Samples of iPPC8 with low octene content up to about 7 mol% were isothermally crystallized from the melt at various crystallization temperatures. The samples crystallize in mixtures of the α and γ forms of isotactic polypropylene (iPP). The relative amount of γ form increases with increasing crystallization temperature, and a maximum amount of γ form (fγ(max)) is achieved for each sample. The crystallization behavior of iPPC8 copolymers is compared with the crystallization from the melt of propene-ethylene, propene-butene, propene-pentene, and propene-hexene copolymers. The results show that the behavior of iPPC8 copolymers is completely different from those described in the literature for the other copolymers of iPP. In fact, the maximum amount of γ form achieved in samples of different copolymers of iPP generally increases with increasing comonomer content, while in iPPC8 copolymers the maximum amount of γ form decreases with increasing octene content. The different behaviors are discussed based on the inclusion of co-monomeric units in the crystals of α and γ forms of iPP or their exclusion from the crystals. In iPPC8 copolymers, octene units are excluded from the crystals giving only the interruption effect that shortens the length of regular propene sequences, inducing crystallization of the γ form at low octene concentrations, lower than 2 mol%. At higher octene concentration, the crystallization of the kinetically favored α form prevails.

8.
J Am Chem Soc ; 144(43): 20016-20024, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36256876

ABSTRACT

Naturally produced, biodegradable polyhydroxyalkanoates (PHAs) promise more sustainable alternatives to nonrenewable/degradable plastics, but biological PHA's stereomicrostructures are strictly confined to isotactic (R)-polymers or copolymers of random sequences. Chemical synthesis via catalyzed ring-opening polymerization (ROP) of cyclic (di)esters offers expedient access to diverse PHA microstructures, including those with defined comonomer sequences and tacticities. However, the synthesis of alternating isotactic PHAs has not been achieved by the existing methodologies. Here, we report the design of unsymmetrically disubstituted eight-membered diolides (rac-8DLR1-R2) and their site- and stereoselective ROP with discrete chiral catalysts, enabling the synthesis of alternating isotactic PHAs, poly(3-hydroxybutyrate-alt-3-hydroxyvalerate) (alt-P3HBV) and poly(3-hydroxybutyrate-alt-3-hydroxyheptanoate) (alt-P3HBHp), with high to quantitative (>99%) alternation and isotacticity and Mn up to 113 kDa and D = 1.01. Physical properties of such PHAs are substantially determined by the degree of backbone sequence alternation and tacticity, ranging from amorphous to semi-crystalline materials. The alt-P3HBV shows significantly improved mechanical performance relative to the constituent homopolymers. Intriguingly, enantiomeric (R)-alt-P3HBV and (S)-alt-P3HBV, synthesized by kinetically resolved ROP of rac-8DLMe-Et, form a stereocomplex with a significantly enhanced Tm (by 53 °C), while the enantiomeric homopolymers do not form a stereocomplex.


Subject(s)
Polyhydroxyalkanoates , Polymerization , 3-Hydroxybutyric Acid , Pentanoic Acids
9.
Polymers (Basel) ; 14(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36146019

ABSTRACT

Random isotactic propene-butene copolymers (iPPC4) of different stereoregularity have been synthesized with three different homogeneous single center metallocene catalysts having different stereoselectivity. All samples crystallize from the polymerization solution in mixtures of α and γ forms, and the relative amount of γ form increases with increasing concentrations of butene and of rr stereodefects. All samples crystallize from the melt in mixtures of α and γ forms and the fraction of γ form increases with decreasing cooling rate. At high cooling rates, the crystallization of the α form is always favored, even for samples that contain high total concentration of defects that should crystallize in the γ form. The results demonstrate that in iPPs containing significant concentrations of defects, such as stereodefects and comonomeric units, the γ form is the thermodynamically stable form of iPP and crystallizes in selective conditions of very slow crystallization, whereas the α form is the kinetically favored form and crystallizes in conditions of fast crystallization.

10.
Polymers (Basel) ; 14(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35458284

ABSTRACT

A study of the structure and morphology of diblock copolymers composed of crystallizable blocks of polyethylene (PE) and syndiotactic polypropylene (sPP) having different lengths is reported. In both analyzed samples, the PE block crystallizes first by cooling from the melt (at 130 °C) and the sPP block crystallizes after at a lower temperature. Small angle X-ray scattering (SAXS) recorded during cooling showed three correlation peaks at values of the scattering vector, q1 = 0.12 nm-1, q2 = 0.24 nm-1 and q3 = 0.4 nm-1, indicating development of a lamellar morphology, where lamellar domains of PE and sPP alternate, each domain containing stacks of crystalline lamellae of PE or sPP sandwiched by their own amorphous phase of PE or sPP. At temperatures higher than 120 °C, when only PE crystals are formed, the morphology is defined by the formation of stacks of PE lamellae (17 nm thick) alternating with amorphous layers and with a long period of nearly 52 nm. At lower temperatures, when crystals of sPP are also well-formed, the morphology is more complex. A model of the morphology at room temperature is proposed based on the correlation distances determined from the self-correlation functions extracted from the SAXS data. Lamellar domains of PE (41.5 nm thick) and sPP (8.2 nm thick) alternate, each domain containing stacks of crystalline lamellae sandwiched by their own amorphous phase, forming a global morphology having a total lamellar periodicity of 49.7 nm, characterized by alternating amorphous and crystalline layers, where the crystalline layers are alternatively made of stacks of PE lamellae (22 nm thick) and thinner sPP lamellae (only 3.5 nm thick).

11.
Polymers (Basel) ; 13(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34451129

ABSTRACT

Crystallization and phase separation in the melt in semicrystalline block copolymers (BCPs) compete in defining the final solid state structure and morphology. In crystalline-crystalline di-block copolymers the sequence of crystallization of the two blocks plays a definitive role. In this work we show that the use of epitaxial crystallization on selected crystalline substrates allows achieving of a control over the crystallization of the blocks by inducing crystal orientations of the different crystalline phases and a final control over the global morphology. A sample of polyethylene-block-syndiotactic polypropylene (PE-b-sPP) block copolymers has been synthesized with a stereoselective living organometallic catalyst and epitaxially crystallized onto crystals of two different crystalline substrates, p-terphenyl (3Ph) and benzoic acid (BA). The epitaxial crystallization on both substrates produces formation of highly ordered morphologies with crystalline lamellae of sPP and PE highly oriented along one direction. However, the epitaxial crystallization onto 3Ph should generate a single orientation of sPP crystalline lamellae highly aligned along one direction and a double orientation of PE lamellae, whereas BA crystals should induce high orientation of only PE crystalline lamellae. Thanks to the use of the two selective substrates, the final morphology reveals the sequence of crystallization events during cooling from the melt and what is the dominant event that drives the final morphology. The observed single orientation of both crystalline PE and sPP phases on both substrates, indeed, indicates that sPP crystallizes first onto 3Ph defining the overall morphology and PE crystallizes after sPP in the confined interlamellar sPP regions. Instead, PE crystallizes first onto BA defining the overall morphology and sPP crystallizes after PE in the confined interlamellar PE regions. This allows for discriminating between the different crystalline phases and defining the final morphology, which depends on which polymer block crystallizes first on the substrate. This work also shows that the use of epitaxial crystallization and the choice of suitable substrate offer a means to produce oriented nanostructures and morphologies of block copolymers depending on the composition and the substrates.

12.
Polymers (Basel) ; 10(2)2018 Feb 08.
Article in English | MEDLINE | ID: mdl-30966198

ABSTRACT

The development of a highly oriented fiber morphology by effect of tensile deformation of stereodefective isotactic polypropylene (iPP) samples, starting from the unoriented γ form, is studied by following the transformation in real time during stretching through wide angle X-ray scattering (WAXS) measurements. In the stretching process, after yielding, the initial γ form transforms into the mesomorphic form of iPP through mechanical melting and re-crystallization. The analysis of the scattering invariant measured in the WAXS region highlights that the size of the mesomorphic domains included in the well oriented fiber morphology obtained at high deformations increases through a process which involves the coalescence of the small fragments formed by effect of tensile stress during lamellar destruction with the domain of higher dimensions.

13.
Molecules ; 22(5)2017 May 06.
Article in English | MEDLINE | ID: mdl-28481242

ABSTRACT

The homogeneous non-catalytic hydrogenation of cis-1,4 poly(isoprene), isotactic cis-1,4 poly(1,3-pentadiene) and syndiotactic cis-1,4 poly(1,3-pentadiene) with diimide, formed by thermal decomposition of para-toluenesulfonylhydrazide, is examined. Perfectly alternating ethylene/propylene copolymers having different tacticity (i.e., isotactic and syndiotactic), which are difficult to synthesize by stereospecific copolymerization of the corresponding monomers, are obtained. Both isotactic and syndiotactic alternating ethylene/propylene copolymers are amorphous, with very low glass transition temperatures.


Subject(s)
Alkenes/chemistry , Ethylenes/chemistry , Polymers/chemistry , Alkadienes/chemistry , Butadienes/chemistry , Hemiterpenes/chemistry , Hydrogenation , Macromolecular Substances , Molecular Conformation , Pentanes/chemistry , Polymerization , Powder Diffraction/methods , Stereoisomerism , Temperature
14.
ACS Appl Mater Interfaces ; 9(37): 31252-31259, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28194933

ABSTRACT

Highly ordered lamellar nanostructures with high orientation of lamellar microdomains have been obtained by epitaxial crystallization of crystalline diblock copolymers constituted by crystalline polyethylene (PE) linked to an amorphous block of a propene-ethene random copolymer (EP). The epitaxial crystallization onto crystals of p-chlorobenzoic acid induces formation of crystalline PE lamellae highly aligned along one direction, resulting in ordered lamellar nanostructures with perfectly aligned layers of crystalline PE alternating to amorphous layers of EP block. The periodicity of the lamellar structure can be modulated by modifying the molecular mass of the amorphous EP block. Epitaxy has been coupled with the technique of gold decoration so that the ordered nanostructures produced by epitaxy act as template for the formation of long, straight, and parallel rows of gold nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...