Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 7: 53, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20828397

ABSTRACT

BACKGROUND: Neuroinflammation is a complex process involving cells from the immune system and the central nerve system (CNS). Polymorphonuclear neutrophils (PMN) are the most abundant class of white blood cells, and typically the first type of leukocyte recruited to sites of inflammation. In the CNS, astrocytes are the most abundant glial cell population and participate in the local innate immune response triggered by a variety of insults. In the present study, we investigated the impacts of astrocytes on PMN function. METHODS: Primary astrocyte cultures were derived from postnatal C57BL/6 mice and primary neutrophils were isolated from 8 to 12 weeks old C57BL/6 mice. PMNs respiratory burst was analyzed by H2DCFDA assay. For phagocytosis assay, neutrophils were incubated with FITC-labeled E. coli and the phagocytosis of E coli was determined by flow cytometer. PMNs degranulation was determined by myeloperoxidase assay. Cytokine expression was determined by real-time PCR. To determine the involvement of different signaling pathway, protein lysates were prepared and western blots were conducted to assess the activation of Akt, Erk1/2, and p38. RESULTS: Using ex vivo neutrophils and primary astrocyte cultures, our study demonstrated that astrocytes differentially regulate neutrophil functions, depending upon whether the interactions between the two cell types are direct or indirect. Upon direct cell-cell contact, astrocytes attenuate neutrophil apoptosis, respiratory bust, and degranulation, while enhancing neutrophil phagocytic capability and pro-inflammatory cytokine expression. Through indirect interaction with neutrophils, astrocytes attenuate apoptosis and enhance necrosis in neutrophils, augment neutrophil phagocytosis and respiratory burst, and inhibit neutrophil degranulation. In addition, astrocytes could augment Akt, Erk1/2, and p38 activation in neutrophils. CONCLUSIONS: Astrocytes differentially regulate neutrophil functions through direct or indirect interactions between the two cell types. The diversified actions of astrocytes on neutrophils might provide protection against potential microbial infections given compromised blood-brain barrier integrity under certain neuropathological conditions. The complex actions of astrocytes on neutrophils could provide further insight to harness the inflammatory response to promote CNS repair.


Subject(s)
Astrocytes/metabolism , Cell Communication/immunology , Neutrophils/metabolism , Respiratory Burst/immunology , Analysis of Variance , Animals , Astrocytes/cytology , Astrocytes/immunology , Blotting, Western , Cells, Cultured , Coculture Techniques , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Inbred C57BL , Neutrophil Activation/immunology , Neutrophils/cytology , Neutrophils/immunology , Phagocytosis/immunology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...