Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biophys J ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38321740

ABSTRACT

We report herein that the anti-CD20 therapeutic antibody, rituximab, is rearranged into microclusters within the phagocytic synapse by macrophage Fcγ receptors (FcγR) during antibody-dependent cellular phagocytosis. These microclusters were observed to potently recruit Syk and to undergo rearrangements that were limited by the cytoskeleton of the target cell, with depolymerization of target-cell actin filaments leading to modest increases in phagocytic efficiency. Total internal reflection fluorescence analysis revealed that FcγR total phosphorylation, Syk phosphorylation, and Syk recruitment were enhanced when IgG-FcγR microclustering was enabled on fluid bilayers relative to immobile bilayers in a process that required Arp2/3. We conclude that on fluid surfaces, IgG-FcγR microclustering promotes signaling through Syk that is amplified by Arp2/3-driven actin rearrangements. Thus, the surface mobility of antigens bound by IgG shapes the signaling of FcγR with an unrecognized complexity beyond the zipper and trigger models of phagocytosis.

4.
Cell Rep ; 37(7): 110008, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34788623

ABSTRACT

Clathrin-mediated endocytosis (CME) is critical for cellular signal transduction, receptor recycling, and membrane homeostasis in mammalian cells. Acute depletion of cholesterol disrupts CME, motivating analysis of CME dynamics in the context of human disorders of cholesterol metabolism. We report that inhibition of post-squalene cholesterol biosynthesis impairs CME. Imaging of membrane bending dynamics and the CME pit ultrastructure reveals prolonged clathrin pit lifetimes and shallow clathrin-coated structures, suggesting progressive impairment of curvature generation correlates with diminishing sterol abundance. Sterol structural requirements for efficient CME include 3' polar head group and B-ring conformation, resembling the sterol structural prerequisites for tight lipid packing and polarity. Furthermore, Smith-Lemli-Opitz fibroblasts with low cholesterol abundance exhibit deficits in CME-mediated transferrin internalization. We conclude that sterols lower the energetic costs of membrane bending during pit formation and vesicular scission during CME and suggest that reduced CME activity may contribute to cellular phenotypes observed within disorders of cholesterol metabolism.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Endocytosis/physiology , Sterols/pharmacology , Cell Surface Extensions/metabolism , Cell Surface Extensions/physiology , Cholesterol/metabolism , Clathrin/metabolism , Fibroblasts/metabolism , HEK293 Cells , Humans , Lipid Metabolism/physiology , Lipids/physiology , Membrane Proteins/metabolism , Receptors, Transferrin/metabolism , Sterols/metabolism
5.
Nat Commun ; 12(1): 4838, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376698

ABSTRACT

Macropinosomes are formed by shaping actin-rich plasma membrane ruffles into large intracellular organelles in a phosphatidylinositol 3-kinase (PI3K)-coordinated manner. Here, we utilize lattice lightsheet microscopy and image visualization methods to map the three-dimensional structure and dynamics of macropinosome formation relative to PI3K activity. We show that multiple ruffling morphologies produce macropinosomes and that the majority form through collisions of adjacent PI3K-rich ruffles. By combining multiple volumetric representations of the plasma membrane structure and PI3K products, we show that PI3K activity begins early throughout the entire ruffle volume and continues to increase until peak activity concentrates at the base of the ruffle after the macropinosome closes. Additionally, areas of the plasma membrane rich in ruffling had increased PI3K activity and produced many macropinosomes of various sizes. Pharmacologic inhibition of PI3K activity had little effect on the rate and morphology of membrane ruffling, demonstrating that early production of 3'-phosphoinositides within ruffles plays a minor role in regulating their morphology. However, 3'-phosphoinositides are critical for the fusogenic activity that seals ruffles into macropinosomes. Taken together, these data indicate that local PI3K activity is amplified in ruffles and serves as a priming mechanism for closure and sealing of ruffles into macropinosomes.


Subject(s)
Cell Membrane/metabolism , Microscopy, Fluorescence/methods , Phosphatidylinositol 3-Kinases/metabolism , Pinocytosis/physiology , Animals , Cell Membrane/drug effects , Cells, Cultured , Chromones/pharmacology , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Macrophages/cytology , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Microscopy, Electron, Scanning , Morpholines/pharmacology , Phosphatidylinositols/metabolism , Pinocytosis/drug effects , RAW 264.7 Cells
6.
Protein Sci ; 27(10): 1850-1856, 2018 10.
Article in English | MEDLINE | ID: mdl-30052312

ABSTRACT

Fluorescence resonance energy transfer (FRET) is a powerful tool to study macromolecular interactions such as protein-protein interactions (PPIs). Fluorescent protein (FP) fusions enable FRET-based PPI analysis of signaling pathways and molecular structure in living cells. Despite FRET's importance in PPI studies, FRET has seen limited use in quantifying the affinities of PPIs in living cells. Here, we have explored the relationship between FRET efficiency and PPI affinity over a wide range when expressed from a single plasmid system in Escherichia coli. Using live-cell microscopy and a set of 20 pairs of small interacting proteins, belonging to different structural folds and interaction affinities, we demonstrate that FRET efficiency can reliably measure the dissociation constant (KD ) over a range of mM to nM. A 10-fold increase in the interaction affinity results in 0.05 unit increase in FRET efficiency, providing sufficient resolution to quantify large affinity differences (> 10-fold) using live-cell FRET. This approach provides a rapid and simple strategy for assessment of PPI affinities over a wide range and will have utility for high-throughput analysis of protein interactions.


Subject(s)
Fluorescence Resonance Energy Transfer , Luminescent Proteins/chemistry , Escherichia coli/chemistry , Escherichia coli/cytology , Escherichia coli/metabolism , Luminescent Proteins/metabolism , Protein Binding
7.
Nat Commun ; 9(1): 419, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29379015

ABSTRACT

Clathrin-mediated endocytosis (CME) internalizes plasma membrane by reshaping small regions of the cell surface into spherical vesicles. The key mechanistic question of how coat assembly produces membrane curvature has been studied with molecular and cellular structural biology approaches, without direct visualization of the process in living cells; resulting in two competing models for membrane bending. Here we use polarized total internal reflection fluorescence microscopy (pol-TIRF) combined with electron, atomic force, and super-resolution optical microscopy to measure membrane curvature during CME. Surprisingly, coat assembly accommodates membrane bending concurrent with or after the assembly of the clathrin lattice. Once curvature began, CME proceeded to scission with robust timing. Four color pol-TIRF showed that CALM accumulated at high levels during membrane bending, implicating its auxiliary role in curvature generation. We conclude that clathrin-coat assembly is versatile and that multiple membrane-bending trajectories likely reflect the energetics of coat assembly relative to competing forces.


Subject(s)
Cell Membrane/physiology , Clathrin-Coated Vesicles/metabolism , Endocytosis , Cell Line , Humans , Monomeric Clathrin Assembly Proteins/metabolism
8.
BMC Immunol ; 17: 5, 2016 Mar 12.
Article in English | MEDLINE | ID: mdl-26970734

ABSTRACT

BACKGROUND: Recent evidence indicates that in addition to the T-cell receptor, microclustering is an important mechanism for the activation of the B-cell receptor and the mast cell Fcε-receptor. In macrophages and neutrophils, particles opsonized with immunoglobulin G (IgG) antibodies activate the phagocytic Fcγ-receptor (FcγR) leading to rearrangements of the actin cytoskeleton. The purpose of this study was to establish a system for high-resolution imaging of FcγR microclustering dynamics and the recruitment of the downstream signaling machinery to these microclusters. METHODS: We developed a supported lipid bilayer platform with incorporated antibodies on its surface to study the formation and maturation of FcγR signaling complexes in macrophages. Time-lapse multicolor total internal reflection microscopy was used to capture the formation of FcγR-IgG microclusters and their assembly into signaling complexes on the plasma membrane of murine bone marrow derived macrophages. RESULTS: Upon antibody binding, macrophages formed FcγR-IgG complexes at the leading edge of advancing pseudopods. These complexes then moved toward the center of the cell to form a structure reminiscent of the supramolecular complex observed in the T-cell/antigen presenting cell immune synapse. Colocalization of signaling protein Syk with nascent clusters of antibodies indicated that phosphorylated receptor complexes underwent maturation as they trafficked toward the center of the cell. Additionally, imaging of fluorescent BtkPH domains indicated that 3'-phosphoinositides propagated laterally away from the FcγR microclusters. CONCLUSION: We demonstrate that surface-associated but mobile IgG induces the formation of FcγR microclusters at the pseudopod leading edge. These clusters recruit Syk and drive the production of diffusing PI(3,4,5)P3 that is coordinated with lamellar actin polymerization. Upon reaching maximal extension, FcγR microclusters depart from the leading edge and are transported to the center of the cellular contact region to form a synapse-like structure, analogous to the process observed for T-cell receptors.


Subject(s)
Imaging, Three-Dimensional , Macrophages/metabolism , Microscopy, Fluorescence/methods , Phagocytosis , Receptors, IgG/metabolism , Signal Transduction , Actins/metabolism , Animals , Immunoglobulin G/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Phosphatidylinositol Phosphates/metabolism , Protein-Tyrosine Kinases/metabolism , Syk Kinase
9.
PLoS One ; 11(3): e0152401, 2016.
Article in English | MEDLINE | ID: mdl-27023704

ABSTRACT

Fluorescence resonance energy transfer (FRET) microscopy is a powerful tool for imaging the interactions between fluorescently tagged proteins in two-dimensions. For FRET microscopy to reach its full potential, it must be able to image more than one pair of interacting molecules and image degradation from out-of-focus light must be reduced. Here we extend our previous work on the application of maximum likelihood methods to the 3-dimensional reconstruction of 3-way FRET interactions within cells. We validated the new method (3D-3Way FRET) by simulation and fluorescent protein test constructs expressed in cells. In addition, we improved the computational methods to create a 2-log reduction in computation time over our previous method (3DFSR). We applied 3D-3Way FRET to image the 3D subcellular distributions of HIV Gag assembly. Gag fused to three different FPs (CFP, YFP, and RFP), assembled into viral-like particles and created punctate FRET signals that become visible on the cell surface when 3D-3Way FRET was applied to the data. Control experiments in which YFP-Gag, RFP-Gag and free CFP were expressed, demonstrated localized FRET between YFP and RFP at sites of viral assembly that were not associated with CFP. 3D-3Way FRET provides the first approach for quantifying multiple FRET interactions while improving the 3D resolution of FRET microscopy data without introducing bias into the reconstructed estimates. This method should allow improvement of widefield, confocal and superresolution FRET microscopy data.


Subject(s)
Fluorescence Resonance Energy Transfer , Imaging, Three-Dimensional , Microscopy, Fluorescence , Protein Interaction Mapping , Algorithms , Animals , COS Cells , Chlorocebus aethiops , Computer Simulation , Fluorescent Dyes/metabolism
10.
Sci Rep ; 5: 10270, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26130463

ABSTRACT

Powerful new methods have extended FRET microscopy to the imaging of three or more interacting proteins inside living cells. Here, we compared widely available fluorescent proteins to find the best trio for 3-Way FRET imaging. We focused on readily available cyan, yellow, and red proteins that have high quantum yields, large extinction coefficients and good photostability, which defined these candidate proteins: CyPet/mTFP1/mTurqoise2, mCitrine/YPet, and TagRFP/TagRFPt/mRuby2/mCherry. By taking advantage of the high structural similarity across the fluorescent proteins, we generated structurally similar, but photophysically distinct donor/acceptor and triple fluorophore fusion proteins and measured their FRET efficiencies inside living cells. Surprisingly, their published photophysical parameters and calculated Förster distances did not predict the best combinations of FPs. Using cycloheximide to inhibit protein synthesis, we found that the different FP maturation rates had a strong effect on the FRET efficiency. This effect was pronounced when comparing rapidly maturing yellow and slowly maturing red FPs. We found that red FPs with inferior photophysics gave superior FRET efficiencies because of faster maturation rates. Based on combined metrics for the FRET efficiency, fluorophore photophysics and fluorophore maturation we determined that Turqoise2, YPet and Cherry were the best available FPs for live cell 3-Way FRET measurements.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Luminescent Proteins/metabolism , Amino Acid Sequence , Animals , COS Cells , Cell Survival , Chlorocebus aethiops , Light , Luminescent Proteins/chemistry , Molecular Sequence Data , Protein Binding , Structural Homology, Protein
11.
PLoS One ; 8(6): e64760, 2013.
Article in English | MEDLINE | ID: mdl-23762252

ABSTRACT

Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Human Immunodeficiency Virus Proteins/chemistry , Human Immunodeficiency Virus Proteins/ultrastructure , Microscopy, Confocal/methods , Bacterial Proteins , Capsid/chemistry , Fluorescent Dyes , Green Fluorescent Proteins , HIV/metabolism , HIV/ultrastructure , Luminescent Proteins , Protein Binding , Protein Interaction Maps , Protein Multimerization , Signal Transduction , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...