Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(7): 076401, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427856

ABSTRACT

We derive a widely applicable first-principles approach for determining two-body, static effective interactions for low-energy Hamiltonians with quantitative accuracy. The algebraic construction rigorously conserves all instantaneous two-point correlation functions in a chosen model space at the level of the random phase approximation, improving upon the traditional uncontrolled static approximations. Applied to screened interactions within a quantum embedding framework, we demonstrate these faithfully describe the relaxation of local subspaces via downfolding high-energy physics in molecular systems, as well as enabling a systematically improvable description of the long-range plasmonic contributions in extended graphene.

2.
J Chem Phys ; 158(12): 124102, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37003769

ABSTRACT

We show how to construct an effective Hamiltonian whose dimension scales linearly with system size, and whose eigenvalues systematically approximate the excitation energies of GW theory. This is achieved by rigorously expanding the self-energy in order to exactly conserve a desired number of frequency-independent moments of the self-energy dynamics. Recasting GW in this way admits a low-scaling O[N4] approach to build and solve this Hamiltonian, with a proposal to reduce this further to O[N3]. This relies on exposing a novel recursive framework for the density response moments of the random phase approximation, where the efficient calculation of its starting point mirrors the low-scaling approaches to compute RPA correlation energies. The frequency integration of GW, which distinguishes so many different GW variants, can be performed without approximation directly in this moment representation. Furthermore, the solution to the Dyson equation can be performed exactly, avoiding analytic continuation, diagonal approximations, or iterative solutions to the quasiparticle equation, with the full-frequency spectrum obtained from the complete solution of this effective static Hamiltonian. We show how this approach converges rapidly with respect to the order of the conserved self-energy moments and is applied across the GW100 benchmark dataset to obtain accurate GW spectra in comparison to traditional implementations. We also show the ability to systematically converge all-electron full-frequency spectra and high-energy features beyond frontier excitations, as well as avoiding discontinuities in the spectrum, which afflict many other GW approaches.

3.
J Chem Phys ; 153(14): 144117, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33086816

ABSTRACT

We present a detailed discussion of our novel diagrammatic coupled cluster Monte Carlo (diagCCMC) [Scott et al. J. Phys. Chem. Lett. 10, 925 (2019)]. The diagCCMC algorithm performs an imaginary-time propagation of the similarity-transformed coupled cluster Schrödinger equation. Imaginary-time updates are computed by the stochastic sampling of the coupled cluster vector function: each term is evaluated as a randomly realized diagram in the connected expansion of the similarity-transformed Hamiltonian. We highlight similarities and differences between deterministic and stochastic linked coupled cluster theory when the latter is re-expressed as a sampling of the diagrammatic expansion and discuss details of our implementation that allow for a walker-less realization of the stochastic sampling. Finally, we demonstrate that in the presence of locality, our algorithm can obtain a fixed errorbar per electron while only requiring an asymptotic computational effort that scales quartically with system size, independent of the truncation level in coupled cluster theory. The algorithm only requires an asymptotic memory cost scaling linearly, as demonstrated previously. These scaling reductions require no ad hoc modifications to the approach.

4.
J Chem Theory Comput ; 15(12): 6625-6635, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31697497

ABSTRACT

We describe a modification of the stochastic coupled cluster algorithm that allows the use of multiple reference determinants. By considering the secondary references as excitations of the primary reference and using them to change the acceptance criteria for selection and spawning, we obtain a simple form of stochastic multireference coupled cluster which preserves the appealing aspects of the single-reference approach. The method is able to successfully describe strongly correlated molecular systems using few references and low cluster truncation levels, showing promise as a tool to tackle strong correlation in more general systems. Moreover, it allows simple and comprehensive control of the included references and excitors thereof, and this flexibility can be taken advantage of to gain insight into some of the inner workings of established electronic structure methods.

5.
J Chem Theory Comput ; 15(6): 3537-3551, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31050430

ABSTRACT

We propose the use of preconditioning in FCIQMC which, in combination with perturbative estimators, greatly increases the efficiency of the algorithm. The use of preconditioning allows a time step close to unity to be used (without time-step errors), provided that multiple spawning attempts are made per walker. We show that this approach substantially reduces statistical noise on perturbative corrections to initiator error, which improve the accuracy of FCIQMC but which can suffer from significant noise in the original scheme. Therefore, the use of preconditioning and perturbatively corrected estimators in combination leads to a significantly more efficient algorithm. In addition, a simpler approach to sampling variational and perturbative estimators in FCIQMC is presented, which also allows the variance of the energy to be calculated. These developments are investigated and applied to benzene (30e, 108o), an example where accurate treatment is not possible with the original method.

6.
J Phys Chem Lett ; 10(5): 925-935, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30724572

ABSTRACT

We propose a modified coupled cluster Monte Carlo algorithm that stochastically samples connected terms within the truncated Baker-Campbell-Hausdorff expansion of the similarity-transformed Hamiltonian by construction of coupled cluster diagrams on the fly. Our new approach-diagCCMC-allows propagation to be performed using only the connected components of the similarity-transformed Hamiltonian, greatly reducing the memory cost associated with the stochastic solution of the coupled cluster equations. We show that for perfectly local, noninteracting systems diagCCMC is able to represent the coupled cluster wavefunction with a memory cost that scales linearly with system size. The favorable memory cost is observed with the only assumption of fixed stochastic granularity and is valid for arbitrary levels of coupled cluster theory. Significant reduction in memory cost is also shown to smoothly appear with dissociation of a finite chain of helium atoms. This approach is also shown not to break down in the presence of strong correlation through the example of a stretched nitrogen molecule. Our novel methodology moves the theoretical basis of coupled cluster Monte Carlo closer to deterministic approaches.

7.
J Chem Theory Comput ; 15(3): 1728-1742, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30681844

ABSTRACT

Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the past decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method allows one to systematically approach the exact solution of such problems, for cases where very high accuracy is desired. The introduction of FCIQMC has subsequently led to the development of coupled cluster Monte Carlo (CCMC) and density matrix quantum Monte Carlo (DMQMC), allowing stochastic sampling of the coupled cluster wave function and the exact thermal density matrix, respectively. In this Article, we describe the HANDE-QMC code, an open-source implementation of FCIQMC, CCMC and DMQMC, including initiator and semistochastic adaptations. We describe our code and demonstrate its use on three example systems; a molecule (nitric oxide), a model solid (the uniform electron gas), and a real solid (diamond). An illustrative tutorial is also included.

8.
J Chem Phys ; 147(12): 124105, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28964015

ABSTRACT

We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.

SELECTION OF CITATIONS
SEARCH DETAIL
...