Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nat Struct Mol Biol ; 31(2): 378-389, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326650

ABSTRACT

E3 ubiquitin ligases, in collaboration with E2 ubiquitin-conjugating enzymes, modify proteins with poly-ubiquitin chains. Cullin-RING ligase (CRL) E3s use Cdc34/UBE2R-family E2s to build Lys48-linked poly-ubiquitin chains to control an enormous swath of eukaryotic biology. Yet the molecular mechanisms underlying this exceptional linkage specificity and millisecond kinetics of poly-ubiquitylation remain unclear. Here we obtain cryogenic-electron microscopy (cryo-EM) structures that provide pertinent insight into how such poly-ubiquitin chains are forged. The CRL RING domain not only activates the E2-bound ubiquitin but also shapes the conformation of a distinctive UBE2R2 loop, positioning both the ubiquitin to be transferred and the substrate-linked acceptor ubiquitin within the active site. The structures also reveal how the ubiquitin-like protein NEDD8 uniquely activates CRLs during chain formation. NEDD8 releases the RING domain from the CRL, but unlike previous CRL-E2 structures, does not contact UBE2R2. These findings suggest how poly-ubiquitylation may be accomplished by many E2s and E3s.


Subject(s)
Cullin Proteins , Ubiquitin-Conjugating Enzymes , Cullin Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitin/metabolism , Polyubiquitin/metabolism
2.
Mol Cell ; 84(7): 1304-1320.e16, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38382526

ABSTRACT

Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.


Subject(s)
Cullin Proteins , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , Ubiquitination , Ubiquitin/metabolism , Polyubiquitin/metabolism , Carrier Proteins/metabolism
3.
Biochem J ; 480(22): 1817-1831, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37870100

ABSTRACT

Protein ubiquitylation typically involves isopeptide bond formation between the C-terminus of ubiquitin to the side-chain amino group on Lys residues. However, several ubiquitin ligases (E3s) have recently been identified that ubiquitylate proteins on non-Lys residues. For instance, HOIL-1 belongs to the RING-in-between RING (RBR) class of E3s and has an established role in Ser ubiquitylation. Given the homology between HOIL-1 and ARIH1, an RBR E3 that functions with the large superfamily of cullin-RING E3 ligases (CRLs), a biochemical investigation was undertaken, showing ARIH1 catalyzes Ser ubiquitylation to CRL-bound substrates. However, the efficiency of ubiquitylation was exquisitely dependent on the location and chemical environment of the Ser residue within the primary structure of the substrate. Comprehensive mutagenesis of the ARIH1 Rcat domain identified residues whose mutation severely impacted both oxyester and isopeptide bond formation at the preferred site for Ser ubiquitylation while only modestly affecting Lys ubiquitylation at the physiological site. The results reveal dual isopeptide and oxyester protein ubiquitylation activities of ARIH1 and set the stage for physiological investigations into this function of emerging importance.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Catalysis
5.
Cell ; 186(9): 1895-1911.e21, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37028429

ABSTRACT

Cells respond to environmental cues by remodeling their inventories of multiprotein complexes. Cellular repertoires of SCF (SKP1-CUL1-F box protein) ubiquitin ligase complexes, which mediate much protein degradation, require CAND1 to distribute the limiting CUL1 subunit across the family of ∼70 different F box proteins. Yet, how a single factor coordinately assembles numerous distinct multiprotein complexes remains unknown. We obtained cryo-EM structures of CAND1-bound SCF complexes in multiple states and correlated mutational effects on structures, biochemistry, and cellular assays. The data suggest that CAND1 clasps idling catalytic domains of an inactive SCF, rolls around, and allosterically rocks and destabilizes the SCF. New SCF production proceeds in reverse, through SKP1-F box allosterically destabilizing CAND1. The CAND1-SCF conformational ensemble recycles CUL1 from inactive complexes, fueling mixing and matching of SCF parts for E3 activation in response to substrate availability. Our data reveal biogenesis of a predominant family of E3 ligases, and the molecular basis for systemwide multiprotein complex assembly.


Subject(s)
Cullin Proteins , F-Box Proteins , SKP Cullin F-Box Protein Ligases , Transcription Factors , Humans , Cullin Proteins/chemistry , Cullin Proteins/metabolism , F-Box Proteins/metabolism , Molecular Conformation , SKP Cullin F-Box Protein Ligases/chemistry , SKP Cullin F-Box Protein Ligases/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
6.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36805027

ABSTRACT

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Humans , Carrier Proteins , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Mol Cell ; 83(1): 57-73.e9, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608670

ABSTRACT

The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1ß-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.


Subject(s)
Amino Acids , Microphthalmia-Associated Transcription Factor , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Amino Acids/metabolism , Nutrients , Protein Stability , Lysosomes/genetics , Lysosomes/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mammals/metabolism
8.
J Med Chem ; 64(9): 5850-5862, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33945681

ABSTRACT

The cullin-RING ubiquitin ligases (CRLs) are ubiquitin E3 enzymes that play a key role in controlling proteasomal degradation and are activated by neddylation. We previously reported inhibitors that target CRL activation by disrupting the interaction of defective in cullin neddylation 1 (DCN1), a CRL neddylation co-E3, and UBE2M, a neddylation E2. Our first-generation inhibitors possessed poor oral bioavailability and fairly rapid clearance that hindered the study of acute inhibition of DCN-controlled CRL activity in vivo. Herein, we report studies to improve the pharmacokinetic performance of the pyrazolo-pyridone inhibitors. The current best inhibitor, 40, inhibits the interaction of DCN1 and UBE2M, blocks NEDD8 transfer in biochemical assays, thermally stabilizes cellular DCN1, and inhibits anchorage-independent growth in a DCN1 amplified squamous cell carcinoma cell line. Additionally, we demonstrate that a single oral 50 mg/kg dose sustains plasma exposures above the biochemical IC90 for 24 h in mice.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Pyrazoles/chemistry , Pyridines/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Administration, Oral , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Design , Drug Stability , Half-Life , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Mice , Molecular Dynamics Simulation , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyridines/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors
9.
Nature ; 590(7847): 671-676, 2021 02.
Article in English | MEDLINE | ID: mdl-33536622

ABSTRACT

E3 ligases are typically classified by hallmark domains such as RING and RBR, which are thought to specify unique catalytic mechanisms of ubiquitin transfer to recruited substrates1,2. However, rather than functioning individually, many neddylated cullin-RING E3 ligases (CRLs) and RBR-type E3 ligases in the ARIH family-which together account for nearly half of all ubiquitin ligases in humans-form E3-E3 super-assemblies3-7. Here, by studying CRLs in the SKP1-CUL1-F-box (SCF) family, we show how neddylated SCF ligases and ARIH1 (an RBR-type E3 ligase) co-evolved to ubiquitylate diverse substrates presented on various F-box proteins. We developed activity-based chemical probes that enabled cryo-electron microscopy visualization of steps in E3-E3 ubiquitylation, initiating with ubiquitin linked to the E2 enzyme UBE2L3, then transferred to the catalytic cysteine of ARIH1, and culminating in ubiquitin linkage to a substrate bound to the SCF E3 ligase. The E3-E3 mechanism places the ubiquitin-linked active site of ARIH1 adjacent to substrates bound to F-box proteins (for example, substrates with folded structures or limited length) that are incompatible with previously described conventional RING E3-only mechanisms. The versatile E3-E3 super-assembly may therefore underlie widespread ubiquitylation.


Subject(s)
F-Box Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination , Allosteric Regulation , Biocatalysis , Cryoelectron Microscopy , Cyclin E/metabolism , Humans , Phosphorylation , Substrate Specificity , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Blood ; 137(2): 155-167, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33156908

ABSTRACT

The histone mark H3K27me3 and its reader/writer polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but are poorly understood. Here we show that the E3 ubiquitin ligase F-box only protein 11 (FBXO11) relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate bromo adjacent homology domain-containing 1 (BAHD1), an H3K27me3 reader that recruits transcriptional corepressors. Erythroblasts lacking FBXO11 are developmentally delayed, with reduced expression of maturation-associated genes, most of which harbor bivalent histone marks at their promoters. In FBXO11-/- erythroblasts, these gene promoters bind BAHD1 and fail to recruit the erythroid transcription factor GATA1. The BAHD1 complex interacts physically with PRC2, and depletion of either component restores FBXO11-deficient erythroid gene expression. Our studies identify BAHD1 as a novel effector of PRC2-mediated repression and reveal how a single E3 ubiquitin ligase eliminates PRC2 repression at many developmentally poised bivalent genes during erythropoiesis.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Erythropoiesis/physiology , F-Box Proteins/metabolism , Gene Expression Regulation/physiology , Polycomb Repressive Complex 2/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Cell Line , Erythroblasts/metabolism , Humans , Proteolysis
11.
Curr Opin Struct Biol ; 67: 101-109, 2021 04.
Article in English | MEDLINE | ID: mdl-33160249

ABSTRACT

RING E3s comprise the largest family of ubiquitin (UB) and ubiquitin-like protein (UBL) ligases. RING E3s typically promote UB or UBL transfer from the active site of an associated E2 enzyme to a distally-recruited substrate. Many RING E3s - including the cullin-RING ligase family - are multifunctional, interacting with various E2s (or other E3s) to target distinct proteins, transfer different UBLs, or to initially modify substrates with UB or subsequently elongate UB chains. Here we consider recent structures of cullin-RING ligases, and their partner E2 enzymes, representing ligation reactions. The studies collectively reveal multimodal mechanisms - interactions between ancillary E2 or E3 domains, post-translational modifications, or auxiliary binding partners - directing cullin-RING E3-E2 enzyme active sites to modify their specific targets.


Subject(s)
Cullin Proteins , Ubiquitin , Catalytic Domain , Cullin Proteins/genetics , Cullin Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitins/genetics , Ubiquitins/metabolism
13.
J Biol Chem ; 295(15): 4974-4984, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32098871

ABSTRACT

The Escherichia coli outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent, but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in different regions of the FepA tertiary structure, with the potential to form disulfide bonds. These included Cys pairs on adjacent ß-strands of the N-domain (intra-N) and Cys pairs that bridged the external surface of the N-domain to the interior of the C-terminal transmembrane ß-barrel (inter-N-C). We characterized FeEnt uptake by these mutants with siderophore nutrition tests, [59Fe]Ent binding and uptake experiments, and fluorescence decoy sensor assays. The three methods consistently showed that the intra-N disulfide bonds, which restrict conformational motion within the N-domain, prevented FeEnt uptake, whereas most inter-N-C disulfide bonds did not prevent FeEnt uptake. These outcomes indicate that conformational rearrangements must occur in the N terminus of FepA during FeEnt transport. They also argue against disengagement of the N-domain out of the channel as a rigid body and suggest instead that it remains within the transmembrane pore as FeEnt enters the periplasm.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Enterobactin/metabolism , Escherichia coli/metabolism , Mutation , Protein Conformation , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Bacterial Outer Membrane Proteins/genetics , Biological Transport , Carrier Proteins/genetics , Escherichia coli/genetics , Escherichia coli/growth & development , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Domains , Receptors, Cell Surface/genetics
14.
Elife ; 82019 12 23.
Article in English | MEDLINE | ID: mdl-31868589

ABSTRACT

The cullin-RING ligases (CRLs) form the major family of E3 ubiquitin ligases. The prototypic CRLs in yeast, called SCF enzymes, employ a single E2 enzyme, Cdc34, to build poly-ubiquitin chains required for degradation. In contrast, six different human E2 and E3 enzyme activities, including Cdc34 orthologs UBE2R1 and UBE2R2, appear to mediate SCF-catalyzed substrate polyubiquitylation in vitro. The combinatorial interplay of these enzymes raises questions about genetic buffering of SCFs in human cells and challenges the dogma that E3s alone determine substrate specificity. To enable the quantitative comparisons of SCF-dependent ubiquitylation reactions with physiological enzyme concentrations, mass spectrometry was employed to estimate E2 and E3 levels in cells. In combination with UBE2R1/2, the E2 UBE2D3 and the E3 ARIH1 both promoted SCF-mediated polyubiquitylation in a substrate-specific fashion. Unexpectedly, UBE2R2 alone had negligible ubiquitylation activity at physiological concentrations and the ablation of UBE2R1/2 had no effect on the stability of SCF substrates in cells. A genome-wide CRISPR screen revealed that an additional E2 enzyme, UBE2G1, buffers against the loss of UBE2R1/2. UBE2G1 had robust in vitro chain extension activity with SCF, and UBE2G1 knockdown in cells lacking UBE2R1/2 resulted in stabilization of the SCF substrates p27 and CYCLIN E as well as the CUL2-RING ligase substrate HIF1α. The results demonstrate the human SCF enzyme system is diversified by association with multiple catalytic enzyme partners.


Subject(s)
Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/genetics , Genome, Human/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mass Spectrometry , Polyubiquitin/genetics , Signal Transduction/genetics , Ubiquitination/genetics
15.
J Med Chem ; 62(18): 8429-8442, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31465221

ABSTRACT

Chemical control of cullin neddylation is attracting increased attention based largely on the successes of the NEDD8-activating enzyme (E1) inhibitor pevonedistat. Recently reported chemical probes enable selective and time-dependent inhibition of downstream members of the neddylation trienzymatic cascade including the co-E3, DCN1. In this work, we report the optimization of a novel class of small molecule inhibitors of the DCN1-UBE2M interaction. Rational X-ray co-structure enabled optimization afforded a 25-fold improvement in potency relative to the initial screening hit. The potency gains are largely attributed to additional hydrophobic interactions mimicking the N-terminal acetyl group that drives binding of UBE2M to DCN1. The compounds inhibit the protein-protein interaction, block NEDD8 transfer in biochemical assays, engage DCN1 in cells, and selectively reduce the steady-state neddylation of Cul1 and Cul3 in two squamous carcinoma cell lines harboring DCN1 amplification.


Subject(s)
Cullin Proteins/chemistry , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , NEDD8 Protein/chemistry , Pyrazoles/chemistry , Pyridones/chemistry , Amides/chemistry , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cell Proliferation , Cyclopentanes/pharmacology , Drug Design , Fibroblasts/metabolism , Glycine/chemistry , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Protein Domains , Protein Interaction Mapping , Pyrimidines/pharmacology , Reactive Oxygen Species/chemistry , Structure-Activity Relationship , Ubiquitin-Conjugating Enzymes/chemistry
16.
Methods Enzymol ; 618: 29-48, 2019.
Article in English | MEDLINE | ID: mdl-30850057

ABSTRACT

Many fundamental discoveries in ubiquitin-proteasome research have relied on reconstitution of activities from purified or recombinantly expressed components. These include landmark discoveries of E1-E2-E3 mechanisms, in which ubiquitin (UB) is initially activated and then covalently shuttled between enzyme active sites and ultimately ligated to substrate or substrate-linked UBs during polyubiquitination. However, recent studies have unearthed enormous variations on the E1-E2-E3 theme; for example, one E3 may employ two distinct E2s, or two different E3s may act in a single assembly or in series, to prime substrates directly with UB and subsequently decorate them with myriad types of polyubiquitin chains. To dissect this complexity, it can be helpful to monitor specific UB transfer reactions in isolation, rather than the end-point products formed upon mixing all enzymes in a cascade. Pulse-chase assays enable observation of a single reaction step and also allow one to differentially label UBs carried by different enzymes within the same tube. In such assays, the "pulse" reaction generates a thioester-linked enzyme~UB intermediate, while the "chase" monitors UB transfer to downstream components over time. Here, we describe pulse-chase assays for detecting fluorescent-UB in E2~UB intermediates. These assays enable direct assessment of particular ligation reactions, alone and in combination, to explore roles of multiple enzymatic cascades in the same tube. We anticipate this technique can be adapted to many different E2s, as well as thioester-forming E3s, to dissect ubiquitination by many distinct enzyme cascades.


Subject(s)
Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination , Animals , Enzyme Assays/methods , Fluorescence , Humans , Substrate Specificity , Ubiquitinated Proteins/metabolism
17.
Mol Cell ; 72(1): 19-36.e8, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30244836

ABSTRACT

Mutations in the tumor suppressor SPOP (speckle-type POZ protein) cause prostate, breast, and other solid tumors. SPOP is a substrate adaptor of the cullin3-RING ubiquitin ligase and localizes to nuclear speckles. Although cancer-associated mutations in SPOP interfere with substrate recruitment to the ligase, mechanisms underlying assembly of SPOP with its substrates in liquid nuclear bodies and effects of SPOP mutations on assembly are poorly understood. Here, we show that substrates trigger phase separation of SPOP in vitro and co-localization in membraneless organelles in cells. Enzymatic activity correlates with cellular co-localization and in vitro mesoscale assembly formation. Disease-associated SPOP mutations that lead to the accumulation of proto-oncogenic proteins interfere with phase separation and co-localization in membraneless organelles, suggesting that substrate-directed phase separation of this E3 ligase underlies the regulation of ubiquitin-dependent proteostasis.


Subject(s)
Cell Compartmentation/genetics , Neoplasms/genetics , Nuclear Proteins/genetics , Proteostasis/genetics , Repressor Proteins/genetics , Cell Line, Tumor , Humans , Mutation , Neoplasms/pathology , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics
18.
PLoS One ; 13(6): e0199197, 2018.
Article in English | MEDLINE | ID: mdl-29958295

ABSTRACT

The activity of Cullin-RING ubiquitin E3 ligases (CRL) is regulated by NEDD8 modification. DCN-like proteins promote Cullin neddylation as scaffold-like E3s. One DCNL, DCNL5, is highly expressed in immune tissue. Here, we provide evidence that DCNL5 may be involved in innate immunity, as it is a direct substrate of the kinase IKKα during immune signalling. We find that upon activation of Toll-like receptors, DCNL5 gets rapidly and transiently phosphorylated on a specific N-terminal serine residue (S41). This phosphorylation event is specifically mediated by IKKα and not IKKß. Our data for the first time provides evidence that DCNL proteins are post-translationally modified in an inducible manner. Our findings also provide the first example of a DCNL member as a kinase substrate in a signalling pathway, indicating that the activity of at least some DCNLs may be regulated.


Subject(s)
I-kappa B Kinase/immunology , Immunity, Innate , Oncogene Proteins/immunology , Peptide Synthases/immunology , Signal Transduction/immunology , Animals , HEK293 Cells , Humans , I-kappa B Kinase/genetics , Mice , NEDD8 Protein/genetics , NEDD8 Protein/immunology , Oncogene Proteins/genetics , Peptide Synthases/genetics , Phosphorylation/genetics , Phosphorylation/immunology , RAW 264.7 Cells , Signal Transduction/genetics
19.
J Med Chem ; 61(7): 2694-2706, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29547693

ABSTRACT

We previously reported the discovery, validation, and structure-activity relationships of a series of piperidinyl ureas that potently inhibit the DCN1-UBE2M interaction. We demonstrated that compound 7 inhibits both the DCN1-UBE2M protein-protein interaction and DCN1-mediated cullin neddylation in biochemical assays and reduces levels of steady-state cullin neddylation in a squamous carcinoma cell line harboring DCN1 amplification. Although compound 7 exhibits good solubility and permeability, it is rapidly metabolized in microsomal models (CLint = 170 mL/min/kg). This work lays out the discovery of an orally bioavailable analogue, NAcM-OPT (67). Compound 67 retains the favorable biochemical and cellular activity of compound 7 but is significantly more stable both in vitro and in vivo. Compound 67 is orally bioavailable, well tolerated in mice, and currently used to study the effects of acute pharmacologic inhibition of the DCN1-UBE2M interaction on the NEDD8/CUL pathway.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cullin Proteins/drug effects , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Biological Availability , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Drug Discovery , Drug Screening Assays, Antitumor , Female , Humans , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/drug therapy , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , NEDD8 Protein/antagonists & inhibitors , NEDD8 Protein/drug effects , Proteins , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemistry
20.
J Med Chem ; 61(7): 2680-2693, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29547696

ABSTRACT

We previously discovered and validated a class of piperidinyl ureas that regulate defective in cullin neddylation 1 (DCN1)-dependent neddylation of cullins. Here, we report preliminary structure-activity relationship studies aimed at advancing our high-throughput screen hit into a tractable tool compound for dissecting the effects of acute DCN1-UBE2M inhibition on the NEDD8/cullin pathway. Structure-enabled optimization led to a 100-fold increase in biochemical potency and modestly increased solubility and permeability as compared to our initial hit. The optimized compounds inhibit the DCN1-UBE2M protein-protein interaction in our TR-FRET binding assay and inhibit cullin neddylation in our pulse-chase NEDD8 transfer assay. The optimized compounds bind to DCN1 and selectively reduce steady-state levels of neddylated CUL1 and CUL3 in a squamous cell carcinoma cell line. Ultimately, we anticipate that these studies will identify early lead compounds for clinical development for the treatment of lung squamous cell carcinomas and other cancers.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cullin Proteins/antagonists & inhibitors , NEDD8 Protein/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Humans , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/drug therapy , Models, Molecular , Molecular Conformation , NEDD8 Protein/metabolism , Protein Binding , Proteins , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...