Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 108(6): 1755-1761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38213121

ABSTRACT

Bacterial blight of carrot, caused by Xanthomonas hortorum pv. carotae (Xhc), is an economically important disease in carrot (Daucus carota subsp. sativus) seed production. The objectives of this study were to determine if Xhc was present on noncarrot crops grown in central Oregon and, if detected, evaluate its ability to colonize alternative hosts. Surveys of three carrot seed fields and adjacent fields of rye (Secale cereale), alfalfa (Medicago sativa), parsley root (Petroselinum crispum var. tuberosum), and Kentucky bluegrass (Poa pratensis) demonstrated that Xhc was present on noncarrot crops. Greenhouse experiments were conducted to determine the ability of Xhc to colonize crops cultivated in the region. Carrot, alfalfa, curly parsley (Petroselinum crispum), Kentucky bluegrass, mint (Mentha × piperita), parsley root, roughstalk bluegrass (Poa trivialis), and wheat (Triticum aestivum) plants were spray-inoculated with Xhc and destructively sampled at 1, 7, 14, and 28 or 25 days post-inoculation. Xhc populations were quantified using viability quantitative PCR and dilution plating. A significant (P ≤ 0.03) effect of crop was observed at 1, 14, and 28 or 25 days in both experiments. While carrot hosted the most Xhc at the final timepoint, other crops supported epiphytic Xhc populations including wheat and both bluegrasses. Mint, parsley root, and alfalfa hosted the least Xhc. Bacterial blight symptoms were observed on carrots but not on noncarrot crops. This suggests that crops grown in central Oregon have the potential to be asymptomatically colonized by Xhc and may serve as reservoirs of the pathogen in carrot seed production systems.


Subject(s)
Crops, Agricultural , Daucus carota , Plant Diseases , Oregon , Plant Diseases/microbiology , Daucus carota/microbiology , Crops, Agricultural/microbiology , Medicago sativa/microbiology
2.
J Agric Food Chem ; 70(48): 15038-15045, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36399785

ABSTRACT

White rot is an economically significant disease of Allium crops. The pathogen Sclerotium cepivorum produces long-lived sclerotia that germinate in response to sulfur-containing compounds released from Allium roots. Diallyl disulfide (DADS) was the primary organic sulfur compound detected in the rhizosphere soil of two garlic cultivars, "California Early and Late", growing in greenhouse conditions. DADS, dimethyl trisulfide (DMTS), dimethyl disulfide (DMDS), isopropyl disulfide (IPDS), dipropyl disulfide (DPDS), diethyl disulfide (DEDS), together with garlic oil, garlic juice, garlic powder, raw onion pieces, cabbage pieces, and Chinese cabbage pieces were investigated for their activities toward germinating dormant sclerotia. Results showed that DADS and other volatile sulfur compounds could stimulate sclerotial germination, and a dose-response was observed. In addition, garlic juice, powder, raw onion, and the two cabbages could stimulate sclerotial germination. Furthermore, the laboratory soil incubation experiments demonstrated the strong interaction of organic sulfur compounds with soil.


Subject(s)
Soil , Sulfur , Disulfides , Sulfur Compounds
3.
Fungal Biol ; 125(9): 725-732, 2021 09.
Article in English | MEDLINE | ID: mdl-34420699

ABSTRACT

Filamentous fungi grow by the elaboration of hyphae, which may fuse to form a network as a colony develops. Fusion of hyphae can occur between genetically different individuals, provided they share a common allele at loci affecting somatic compatibility. Diversity in somatic compatibility phenotypes reduces the frequency of hyphal fusion in a population, thereby slowing the spread of deleterious genetic elements such as viruses and plasmids, which require direct cytoplasmic contact for transmission. Diverse somatic compatibility phenotypes can be generated by recombining alleles through sexual reproduction, but this mechanism may not fully account for the diversity found in nature. For example, multiple compatibility phenotypes of Fusarium circinatum were shown to be associated with the same clonal lineage, which implies they were derived by a mutation rather than recombination through sexual reproduction. Experimental tests of this hypothesis confirmed that spontaneous changes in somatic compatibility can occur at a frequency between 5 and 8 per million spores. Genomic analysis of F. circinatum strains with altered somatic compatibility revealed no consistent evidence of recombination and supported the hypothesis that a spontaneous mutation generated the observed phenotypic change. Genes known to be involved in somatic compatibility had no mutations, suggesting that mutation occurred in a gene with an as yet unexplored function in somatic compatibility.


Subject(s)
Fusarium , Hyphae , Fusarium/physiology , Genes, Fungal/genetics , Humans , Hyphae/genetics , Mutation , Spores, Fungal/genetics
4.
Phytopathology ; 111(5): 831-841, 2021 May.
Article in English | MEDLINE | ID: mdl-33141647

ABSTRACT

Ergot, caused by Claviceps purpurea sensu lato, is an economically important seed replacement disease of Kentucky bluegrass (Poa pratensis) and perennial ryegrass (Lolium perenne) seed crops. C. purpurea sensu stricto is considered the primary Claviceps species responsible, but genetic diversity and cryptic species within C. purpurea sensu lato have previously been reported. Fifty-six C. purpurea sensu lato isolates collected from P. pratensis (n = 21) and L. perenne (n = 35) in Oregon and Washington between 2010 and 2014 were characterized via random amplified polymorphic DNA (RAPD), partial internal transcribed spacer (ITS), ß-tubulin and elongation factor-1α (EF-1α) sequences, conidial size, and ergot alkaloid chemotype. Based on RAPD analysis, seven isolates from P. pratensis and 33 isolates from L. perenne collected in Oregon corresponded to C. purpurea sensu stricto, and 13 isolates collected from P. pratensis in Washington and Oregon were identified as C. humidiphila. Partial ITS, ß-tubulin, and EF-1α sequences identified 10 isolates from P. pratensis as C. humidiphila, and seven isolates from P. pratensis and 33 isolates from L. perenne were identified as C. purpurea sensu stricto. Several isolates generated ambiguous RAPD bands or sequences that prevented identification. Ergot alkaloid chemotype profiling found that ergocornine and its epimer were predominant in sclerotia from P. pratensis, whereas ergotamine and its epimer were most abundant in sclerotia from L. perenne. This study confirms the presence of the C. purpurea sensu lato species complex in the U.S. Pacific Northwest and suggests that more research is needed to characterize and mitigate Claviceps spp. infection of grass seed crops in North America.


Subject(s)
Claviceps , Ergot Alkaloids , Claviceps/genetics , Plant Diseases , Poaceae , Random Amplified Polymorphic DNA Technique , Seeds , Washington
5.
Plant Dis ; 104(8): 2144-2148, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32526155

ABSTRACT

Bacterial blight of carrot (Daucus carota subsp. sativus), caused by the plant-pathogenic bacterium Xanthomonas hortorum pv. carotae, is a common seedborne disease of carrot wherever the crop is grown. Carrot seed lots were evaluated to determine the variability and distribution of populations of X. hortorum pv. carotae among individual carrot seeds. Twenty-four carrot seed lots harvested between 2014 and 2016 were subjected to a bulk seed wash dilution-plate assay to obtain mean X. hortorum pv. carotae levels. Mean infestation levels resulting from the bulk seed wash assays among the 24 seed lots ranged from 1.2 × 107 and 9.6 × 108 CFU/g seed and averaged 3.6 × 108 CFU/g seed. Individual seeds from the same 24 lots were also tested with a scaled-down wash assay of individual seeds. Among the 1,380 seeds that were individually assayed, 475 X. hortorum pv. carotae-positive seeds were detected (34.4%). Rates of X. hortorum pv. carotae detection on individual seed in seed lots ranged from 0% (not detected) to 97.9%, and the mean and median X. hortorum pv. carotae population on an individual seed was 8.3 × 104 and 6.3 × 101 CFU/seed, respectively. Among individual seeds, X. hortorum pv. carotae populations ranged from 2 (the limit of detection of the assay) to 3.6 × 107 CFU/seed. CFU data for 23 of the 24 seed lots were nonnormal and the Log-Logistic (3P) distribution best described populations of X. hortorum pv. carotae recovered from individual carrot seeds. The influence and impact of nonnormal distributions of X. hortorum pv. carotae in commercial carrot seed lots on seed health tests, seedborne transmission, and bacterial blight epidemiology requires further study.


Subject(s)
Daucus carota , Xanthomonas , Plant Diseases , Seeds
6.
PLoS One ; 14(2): e0211508, 2019.
Article in English | MEDLINE | ID: mdl-30759127

ABSTRACT

Disease prediction tools improve management efforts for many plant diseases. Prediction and downstream prevention demand information about disease etiology, which can be complicated for some diseases, like those caused by soilborne microorganisms. Fortunately, the availability of machine learning methods has enabled researchers to elucidate complex relationships between hosts and pathogens without invoking difficult-to-satisfy assumptions. The etiology of a destructive plant disease, Verticillium wilt of mint, caused by the fungus Verticillium dahliae was reevaluated with several supervised machine learning methods. Specifically, the objective of this research was to identify drivers of wilt in commercial mint fields, describe the relationships between these drivers, and predict wilt. Soil samples were collected from commercial mint fields. Wilt foci, V. dahliae, and plant-parasitic nematodes that can exacerbate wilt were quantified. Multiple linear regression, a generalized additive model, random forest, and an artificial neural network were fit to the data, validated with 10-fold cross-validation, and measures of explanatory and predictive performance were compared. All models selected nematodes within the genus Pratylenchus as the most important predictor of wilt. The fungus after which this disease is named, V. dahliae, was the fourth most important predictor of wilt, after crop age and cultivar. All models explained around 50% of the total variation (R2 ≤ 0.46), and exhibited comparable predictive error (RMSE ≤ 1.21). Collectively, these models revealed that the quantitative relationships between two pathogens, mint cultivars and age are required to explain wilt. The ascendance of Pratylenchus spp. in predicting symptoms of a disease assumed to primarily be caused by V. dahliae exposes the underestimated contribution of these nematodes to wilt. This research provides a foundation on which predictive forecasting tools can be developed for mint growers and reminds us of the lessons that can be learned by revisiting assumptions about disease etiology.


Subject(s)
Mentha/microbiology , Nematoda/physiology , Plant Diseases/microbiology , Verticillium/physiology , Animals , Host-Pathogen Interactions , Machine Learning , Mentha/parasitology , Plant Diseases/parasitology
7.
Plant Dis ; 102(12): 2487-2493, 2018 12.
Article in English | MEDLINE | ID: mdl-30256180

ABSTRACT

The U.S. Pacific Northwest states of Oregon and Washington are major producers of cool-season grass seed. Ergot, caused by fungi in the Claviceps purpurea sensu lato group, is an important seed replacement disease of grass worldwide. Microscopic methods that are currently used to quantify airborne Claviceps ascospores captured by spore traps are not currently rapid enough to allow for detecting and reporting of spore numbers in a timely manner, hindering growers from using this information to help manage ergot. We developed a SYBR Green real-time quantitative polymerase chain reaction (qPCR)-based assay for fast and efficient detection and quantification of C. purpurea sensu lato ascospores from Hirst-type spore traps. Species-specificity of the qPCR assay was confirmed against 41 C. purpurea sensu lato isolates collected from six hosts and six other Claviceps spp. Significant relationships were observed between cycle threshold (Ct) values and standard curves of serial dilutions of DNA ranging from 1 pg to 10 ng (R2 = -0.99; P = 0.0002) and DNA extracted from a conidial suspension representing 8 to 80,000 conidia (R2 = -0.99; P = 0.0004). Ct values from qPCR were significantly correlated with results from microscopic examination of spore trap samples from the field (r = -0.68; P < 0.0001) and the procedure was able to detect a single ascospore from spore trap tape samples. The qPCR procedure developed in this study provided a means for quantifying airborne Claviceps ascospores that was highly specific and useful over a wide range of spore densities, and could be performed in a matter of hours instead of days. The qPCR assay developed in this study could be part of an integrated pest management approach to help grass seed growers make risk-based fungicide application decisions for ergot management in grass grown for seed.


Subject(s)
Air Microbiology , Claviceps/isolation & purification , Lolium/microbiology , Plant Diseases/microbiology , Poa/microbiology , Real-Time Polymerase Chain Reaction/methods , Claviceps/genetics , Kentucky , Seeds/microbiology , Spores, Fungal
8.
Plant Dis ; 98(10): 1309-1320, 2014 Oct.
Article in English | MEDLINE | ID: mdl-30703930

ABSTRACT

Widely virulent races of the stem rust pathogen (Puccinia graminis f. sp. tritici) such as those isolated from Africa (e.g., TTKSK, isolate synonym Ug99) threaten wheat production worldwide. To identify Aegilops accessions with effective resistance to such virulent stem rust races, up to 10 different species from Israel were evaluated against African races TTKSK, TTKST, and TTTSK and the Israeli race TTTTC as seedlings in the greenhouse. A wide diversity of stem rust reactions was observed across the Aegilops spp. and ranged from highly resistant (i.e., infection type 0) to highly susceptible (infection type 4). The frequency of resistance within a species to races TTTTC and TTKSK ranged from 7 and 14%, respectively, in Aegilops searsii to 98 and 100% in AE. speltoides. In all, 346 accessions were found resistant to the three African races and 138 accessions were resistant (or heterogeneous with a resistant component) to all four races. The species with broadly resistant accessions included Ae. longissima (59 accessions), Ae. peregrina (47 accessions), Ae. sharonensis (15 accessions), Ae. geniculata (9 accessions), Ae. kotschyi (5 accessions), and Ae. bicornis (3 accessions). Few geographical trends or correlations with climatic variables were observed with respect to stem rust resistance in the Aegilops spp. The exception was Ae. longissima infected with race TTTTC, where a high frequency of resistance was found in central and northern Israel and a very low frequency in southern Israel (Negev desert region). This geographical trend followed a pattern of annual precipitation in Israel, and a significant correlation was found between this variable and resistance in Ae. longissima. Although difficult, it is feasible to transfer resistance genes from Aegilops spp. into wheat through conventional wide-crossing schemes or, alternatively, a cloning and transformation approach. The broadly resistant accessions identified in this study will be valuable in these research programs.

9.
J Chem Ecol ; 39(7): 942-51, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23881445

ABSTRACT

Pseudomonas putida 1290 is a model organism for the study of bacterial degradation of the plant hormone indole-3-acetic acid (IAA). This property is encoded by the iac gene cluster. Insertional inactivation and/or deletion of individual iac genes and heterologous expression of the gene cluster in Escherichia coli were combined with mass spectrometry to demonstrate that iac-based degradation of IAA is likely to involve 2-hydroxy-IAA, 3-hydroxy-2-oxo-IAA, and catechol as intermediates. The first gene of the cluster, iacA encodes for the first step in the pathway, and also can convert indole to indoxyl to produce the blue pigment indigo. Transcriptional profiling of iac genes in P. putida 1290 revealed that they were induced in the presence of IAA. Based on results with an iacR knockout, we propose that this gene codes for a repressor of iacA expression and that exposure to IAA relieves this repression. Transformation of P. putida KT2440 (which cannot degrade IAA) with the iac gene cluster conferred the ability to grow on IAA as a sole source of carbon and energy, but not the ability to chemotaxi towards IAA. We could show such tactic response for P. putida 1290, thus representing the first demonstration of bacterial chemotaxis towards IAA. We discuss the ecological significance of our findings, and specifically the following question: under what circumstances do bacteria with the ability to degrade, recognize, and move towards IAA have a selective advantage?


Subject(s)
Genes, Bacterial , Indoleacetic Acids/metabolism , Pseudomonas putida/genetics , Chemotaxis , Escherichia coli , Gene Expression , Phenotype , Plasmids , Pseudomonas putida/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...