Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phycol ; 49(1): 143-55, 2013 Feb.
Article in English | MEDLINE | ID: mdl-27008396

ABSTRACT

A new planktonic species of Prorocentrum is described from the Gulf of Mexico. First observed with the Imaging FlowCytobot, Prorocentrum texanum sp. nov. was characterized using LM, SEM, and TEM along with sequencing of the SSU, LSU, and ITS ribosomal regions and the mitochondrial cob and cox1 regions. P. texanum sp. nov. is a round to oval bivalvate dinoflagellate, with a prominent anterior, serrated solid flange on periflagellar a platelet and an opposing short, flat flange on the h platelet. The periflagellar area consists of 10 platelets. Both left and right valves have shallow round depressions and two-sized valve pores. The anterior ejectosome pore pattern differs between the left and right valve in relation to the periflagellar area and margins. Ten to eleven rows of tangential ejectosome pores are present on each valve. P. texanum sp. nov. has two varieties which exhibit distinct morphotypes, one round to oval (var. texanum) and the other pointed (var. cuspidatum). P. texanum var. cuspidatum is morphologically similar to P. micans in surface markings, but is smaller, and has a serrated periflagellar flange, and is genetically distinct from P. micans. Cytologically, P. texanum has two parietal chlo-roplasts, each with a compound, interlamellar pyrenoid, trichocysts, fibrous vesicles that resemble mucocysts, pusules, V- to U-shaped posterior nucleus, golgi, and tubular mitochondria. No genetic difference was found between the two varieties in the five genes examined. Phylogenetic analysis of the SSU, LSU, and ITS ribosomal regions place P. texanum sp. nov. as a sister group to P. micans. One isolate of P. texanum var. texanum produces okadaic acid.

2.
Toxicon ; 52(1): 32-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18582486

ABSTRACT

Brevetoxin uptake and elimination were examined in Eastern oyster (Crassostrea virginica) exposed to recurring blooms of the marine alga Karenia brevis in Sarasota Bay, FL, over a three-year period. Brevetoxins were monitored by in vitro assays (ELISA, cytotoxicity assay, and receptor binding assay) and LC-MS, with in vivo toxicity of shellfish extracts assessed by the traditional mouse bioassay. Measurements by all methods reflected well the progression and magnitude of the blooms. Highest levels recorded by mouse bioassay at bloom peak were 157 MU/100g. Oysters were toxic by mouse bioassay at levels >or=20 MU/100g for up to two weeks after bloom dissipation, whereas brevetoxins were measurable by in vitro assays and LC-MS for several months afterwards. For the structure-based methods, summed values for the principal brevetoxin metabolites of PbTx-2 (cysteine and cysteine sulfoxide conjugates), as determined by LC-MS, were highly correlated (r(2)=0.90) with composite toxin measurements by ELISA. ELISA and LC-MS values also correlated well (r(2)=0.74 and 0.73, respectively) with those of mouse bioassay. Pharmacology-based cytotoxicity and receptor binding assays did not correlate as well (r(2)=0.65), and were weakly correlated with mouse bioassay (r(2)=0.48 and 0.50, respectively). ELISA and LC-MS methods offer rapid screening and confirmation, respectively, of brevetoxin contamination in the oyster, and are excellent alternatives to mouse bioassay for assessing oyster toxicity following K. brevis blooms.


Subject(s)
Crassostrea/metabolism , Dinoflagellida/pathogenicity , Environmental Monitoring , Marine Toxins/analysis , Oxocins/analysis , Animals , Biological Assay , Chromatography, Liquid , Food Contamination , Marine Toxins/toxicity , Mass Spectrometry , Mice , Oxocins/toxicity
3.
Environ Health Perspect ; 114(10): 1502-7, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17035133

ABSTRACT

BACKGROUND: From January 2002 to May 2004, 28 puffer fish poisoning (PFP) cases in Florida, New Jersey, Virginia, and New York were linked to the Indian River Lagoon (IRL) in Florida. Saxitoxins (STXs) of unknown source were first identified in fillet remnants from a New Jersey PFP case in 2002. METHODS: We used the standard mouse bioassay (MBA), receptor binding assay (RBA), mouse neuroblastoma cytotoxicity assay (MNCA), Ridascreen ELISA, MIST Alert assay, HPLC, and liquid chromatography-mass spectrometry (LC-MS) to determine the presence of STX, decarbamoyl STX (dc-STX), and N-sulfocarbamoyl (B1) toxin in puffer fish tissues, clonal cultures, and natural bloom samples of Pyrodinium bahamense from the IRL. RESULTS: We found STXs in 516 IRL southern (Sphoeroides nephelus), checkered (Sphoeroides testudineus), and bandtail (Sphoeroides spengleri) puffer fish. During 36 months of monitoring, we detected STXs in skin, muscle, and viscera, with concentrations up to 22,104 microg STX equivalents (eq)/100 g tissue (action level, 80 microg STX eq/100 g tissue) in ovaries. Puffer fish tissues, clonal cultures, and natural bloom samples of P. bahamense from the IRL tested toxic in the MBA, RBA, MNCA, Ridascreen ELISA, and MIST Alert assay and positive for STX, dc-STX, and B1 toxin by HPLC and LC-MS. Skin mucus of IRL southern puffer fish captive for 1-year was highly toxic compared to Florida Gulf coast puffer fish. Therefore, we confirm puffer fish to be a hazardous reservoir of STXs in Florida's marine waters and implicate the dinoflagellate P. bahamense as the putative toxin source. CONCLUSIONS: Associated with fatal paralytic shellfish poisoning (PSP) in the Pacific but not known to be toxic in the western Atlantic, P. bahamense is an emerging public health threat. We propose characterizing this food poisoning syndrome as saxitoxin puffer fish poisoning (SPFP) to distinguish it from PFP, which is traditionally associated with tetrodotoxin, and from PSP caused by STXs in shellfish.


Subject(s)
Dinoflagellida/chemistry , Poisoning/epidemiology , Saxitoxin/poisoning , Takifugu , Animals , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Humans , Marine Toxins/poisoning , Mass Spectrometry , Microscopy, Electron, Scanning , United States/epidemiology
4.
Nature ; 435(7043): 755-6, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-15944690

ABSTRACT

Potent marine neurotoxins known as brevetoxins are produced by the 'red tide' dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies. Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.


Subject(s)
Dinoflagellida/chemistry , Food Chain , Mammals/metabolism , Marine Biology , Marine Toxins/analysis , Oxocins/analysis , Animals , Dolphins/metabolism , Fishes/metabolism , Gastrointestinal Contents/chemistry , Humans , Trichechus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...