Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Antiviral Res ; 226: 105899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705201

ABSTRACT

We recently developed compound FC-7269 for targeting the Molluscum contagiosum virus processivity factor (mD4) and demonstrated its ability to inhibit viral processive DNA synthesis in vitro and cellular infection of an mD4-dependent virus (Antiviral Res 211, 2023,105520). However, despite a thorough medicinal chemistry campaign we were unable to generate a potent second analog as a requisite for drug development. We overcame this impasse, by conjugating a short hydrophobic trivaline peptide to FC-7269 to produce FC-TriVal-7269 which significantly increased antiviral potency and reduced cellular toxicity.


Subject(s)
Antiviral Agents , Molluscum contagiosum virus , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Molluscum contagiosum virus/drug effects , Humans , Virus Replication/drug effects , Molluscum Contagiosum/drug therapy , Oligopeptides/pharmacology , Oligopeptides/chemistry , Animals , Cell Line
2.
BMC Plant Biol ; 23(1): 636, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072924

ABSTRACT

BACKGROUND: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS: Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS: These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.


Subject(s)
Alkaloids , Epichloe , Lolium , Endophytes/metabolism , Lolium/genetics , Epichloe/genetics , Epichloe/metabolism , Symbiosis , Poaceae/metabolism , Alkaloids/metabolism , Lipids
4.
Med Chem Res ; : 1-17, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37362318

ABSTRACT

Most fungal infections are common, localized to skin or mucosal surfaces and can be treated effectively with topical antifungal agents. However, while invasive fungal infections (IFIs) are uncommon, they are very difficult to control medically, and are associated with high mortality rates. We have previously described highly potent bis-guanidine-containing heteroaryl-linked antifungal agents, and were interested in expanding the range of agents to novel series so as to reduce the degree of aromaticity (with a view to making the compounds more drug-like), and provide broadly active high potency derivatives. We have investigated the replacement of the central aryl ring from our original series by both amide and a bis-amide moieties, and have found particular structure-activity relationships (SAR) for both series', resulting in highly active antifungal agents against both mold and yeast pathogens. In particular, we describe the in vitro antifungal activity, absorption, distribution, metabolism and elimination (ADME) properties, and off-target properties of FC12406 (34), which was selected as a pre-clinical development candidate.

5.
Antiviral Res ; 211: 105520, 2023 03.
Article in English | MEDLINE | ID: mdl-36603771

ABSTRACT

Molluscum contagiosum (MC) is an infectious disease that occurs only in humans with a tropism that is narrowly restricted to the outermost epidermal layer of the skin. Molluscum contagiosum virus (MCV) is the causative agent of MC which produces skin lesions that can persist for months to several years. MCV is efficiently transmitted by direct physical contact or by indirect contact with fomites. MC is most prevalent in children and immune compromised patients. The failure to develop a drug that targets MCV replication has been hampered for decades by the inability to propagate MCV in cell culture. To address this dilemma, we recently engineered a surrogate poxvirus expressing the MCV processivity factor (mD4) as the drug target. The mD4 protein is essential for viral replication by keeping the viral polymerase tethered to the DNA template. In this study we have designed and synthesized a lead compound (7269) that is able to prevent mD4 dependent processive DNA synthesis in vitro (IC50 = 6.8 µM) and effectively inhibit propagation of the mD4-VV surrogate virus in BSC-1 cells (EC50 = 13.2 µM) with negligible cytotoxicity. In human liver microsomes, 7269 was shown to be stable for almost 2 h. When tested for penetration into human cadaver skin in a formulated gel, the level of 7269 in the epidermal layer was nearly 100 times the concentration (EC50) needed to inhibit propagation of the mD4-VV surrogate virus in BSC-1 cells. The gel formulated 7269 was scored as a non-irritant on skin and shown to have a shelf-life that was completely stable after several months. In summary, 7269 is a potential Lead for becoming the first MCV anti-viral compound to treat MC and thereby, addresses this unmet medical need that has persisted for many decades.


Subject(s)
Molluscum Contagiosum , Molluscum contagiosum virus , Child , Humans , Molluscum contagiosum virus/genetics , Molluscum contagiosum virus/metabolism , Viral Proteins/genetics , DNA/metabolism
6.
Front Plant Sci ; 12: 641822, 2021.
Article in English | MEDLINE | ID: mdl-33897730

ABSTRACT

Diacylglycerol acyl-transferase (DGAT) and cysteine oleosin (CO) expression confers a novel carbon sink (of encapsulated lipid droplets) in leaves of Lolium perenne and has been shown to increase photosynthesis and biomass. However, the physiological mechanism by which DGAT + CO increases photosynthesis remains unresolved. To evaluate the relationship between sink strength and photosynthesis, we examined fatty acids (FA), water-soluble carbohydrates (WSC), gas exchange parameters and leaf nitrogen for multiple DGAT + CO lines varying in transgene accumulation. To identify the physiological traits which deliver increased photosynthesis, we assessed two important determinants of photosynthetic efficiency, CO2 conductance from atmosphere to chloroplast, and nitrogen partitioning between different photosynthetic and non-photosynthetic pools. We found that DGAT + CO accumulation increased FA at the expense of WSC in leaves of L. perenne and for those lines with a significant reduction in WSC, we also observed an increase in photosynthesis and photosynthetic nitrogen use efficiency. DGAT + CO L. perenne displayed no change in rubisco content or Vcmax but did exhibit a significant increase in specific leaf area (SLA), stomatal and mesophyll conductance, and leaf nitrogen allocated to photosynthetic electron transport. Collectively, we showed that increased carbon demand via DGAT+CO lipid sink accumulation can induce leaf-level changes in L. perenne which deliver increased rates of photosynthesis and growth. Carbon sinks engineered within photosynthetic cells provide a promising new strategy for increasing photosynthesis and crop productivity.

7.
Bioorg Med Chem Lett ; 33: 127727, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33316410

ABSTRACT

Invasive fungal infections have become an important healthcare issue due in large part to high mortality rates under standard of care (SOC) therapies creating an urgent need for new and effective anti-fungal agents. We have developed a series of non-peptide, structurally-constrained analogs of host defence proteins that have distinct advantages over peptides for pharmaceutical uses. Here we report the chemical optimization of bis-guanidine analogs focused on alterations of the central aryl core and the connection of it to the terminal guanidines. This effort resulted in the production of highly potent, broadly active compounds with low mammalian cell cytotoxicity that have comparable or improved antifungal activities over SOC agents. One optimal compound was also found to possess favourable in vitro pharmaceutical and off-target properties suitable for further development.


Subject(s)
Antifungal Agents/pharmacology , Guanidine/pharmacology , Invasive Fungal Infections/drug therapy , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus/drug effects , Candida/drug effects , Dose-Response Relationship, Drug , Guanidine/analogs & derivatives , Guanidine/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
8.
Ocul Surf ; 19: 313-321, 2021 01.
Article in English | MEDLINE | ID: mdl-33161128

ABSTRACT

PURPOSE: Acyclovir is most commonly used for treating ocular Herpes Keratitis, a leading cause of infectious blindness. However, emerging resistance to Acyclovir resulting from mutations in the thymidine kinase gene of Herpes Simplex Virus -1 (HSV-1), has prompted the need for new therapeutics directed against a different viral protein. One novel target is the HSV-1 Processivity Factor which is essential for tethering HSV-1 Polymerase to the viral genome to enable long-chain DNA synthesis. METHODS: A series of peptides, based on the crystal structure of the C-terminus of HSV-1 Polymerase, were constructed with hydrocarbon staples to retain their alpha-helical conformation. The stapled peptides were tested for blocking both HSV-1 DNA synthesis and infection. The most effective peptide was further optimized by replacing its negative N-terminus with two hydrophobic valine residues. This di-valine stapled peptide was tested for inhibiting HSV-1 infection of human primary corneal epithelial cells. RESULTS: The stapled peptides blocked HSV-1 DNA synthesis and HSV-1 infection. The unstapled control peptide had no inhibitory effects. Specificity of the stapled peptides was confirmed by their inabilities to block infection by an unrelated virus. Significantly, the optimized di-valine stapled peptide effectively blocked HSV-1 infection in human primary corneal epithelial cells with selectivity index of 11.6. CONCLUSIONS: Hydrocarbon stapled peptides that simulate the α-helix from the C-terminus of HSV-1 DNA polymerase can specifically block DNA synthesis and infection of HSV-1 in human primary corneal epithelial cells. These stapled peptides provide a foundation for developing a topical therapeutic for treating human ocular Herpes Keratitis.


Subject(s)
Herpesvirus 1, Human , Keratitis, Herpetic , DNA , Epithelial Cells , Herpesvirus 1, Human/genetics , Humans , Keratitis, Herpetic/drug therapy , Peptides/pharmacology
9.
J Fungi (Basel) ; 6(4)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007818

ABSTRACT

Disseminated infection by Candida species represents a common, often life-threatening condition. Increased resistance to current antifungal drugs has led to an urgent need to develop new antifungal drugs to treat this pathogen. However, in vivo screening of candidate antifungal compounds requires large numbers of animals and using immunosuppressive agents to allow for fungal dissemination. To increase the efficiency of screening, to use fewer mice, and to remove the need for immunosuppressive agents, which may interfere with the drug candidates, we tested the potential for a novel approach using in vivo imaging of a fluorescent strain of Candida albicans, in a mouse strain deficient in the host defense peptide, murine ß-defensin 1 (mBD-1). We developed a strain of C. albicans that expresses red fluorescent protein (RFP), which exhibits similar infectivity to the non-fluorescent parent strain. When this strain was injected into immunocompetent mBD-1-deficient mice, we observed a non-lethal disseminated infection. Further, we could quantify its dissemination in real time, and observe the activity of an antifungal peptide mimetic drug by in vivo imaging. This novel method will allow for the rapid in vivo screening of antifungal drugs, using fewer mice, and increase the efficiency of testing new antifungal agents.

10.
Genome Biol Evol ; 11(7): 1965-1970, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263885

ABSTRACT

Internal parasitic nematodes are a global animal health issue causing drastic losses in livestock. Here, we report a H. contortus representative draft genome to serve as a genetic resource to the scientific community and support future experimental research of molecular mechanisms in related parasites. A de novo hybrid assembly was generated from PCR-free whole genome sequence data, resulting in a chromosome-level assembly that is 465 Mb in size encoding 22,341 genes. The genome sequence presented here is consistent with the genome architecture of the existing Haemonchus species and is a valuable resource for future studies regarding population genetic structures of parasitic nematodes. Additionally, comparative pan-genomics with other species of economically important parasitic nematodes have revealed highly open genomes and strong collinearities within the phylum Nematoda.


Subject(s)
Anthelmintics/pharmacology , Genome, Helminth/genetics , Haemonchus/drug effects , Haemonchus/genetics , Animals , Base Sequence , Genomics , New Zealand
11.
Cells ; 8(4)2019 04 03.
Article in English | MEDLINE | ID: mdl-30987258

ABSTRACT

Host-defense peptides (HDPs) have an important therapeutic potential against microbial infections but their metabolic instability and cellular cytotoxicity have limited their utility. To overcome these limitations, we utilized five small-molecule, nonpeptide HDP mimetics (smHDPMs) and tested their effects on cytotoxicity, antimicrobial activity, and mast cell (MC) degranulation. None of the smHDPMs displayed cytotoxicity against mouse 3T3 fibroblasts or human transformed liver HepG2 cells. However, one compound had both antifungal and antibacterial activity. Surprisingly, all five compounds induced degranulation in a human MC line, LAD2, and this response was substantially reduced in Mas-related G protein-coupled receptor (GPCR)-X2 (MRGPRX2)-silenced cells. Furthermore, all five compounds induced degranulation in RBL-2H3 cells expressing MRGPRX2 but this response was abolished in cells expressing naturally occurring loss-of-function missense variants G165E (rs141744602) and D184H (rs372988289). Mrgprb2 is the likely mouse ortholog of human MRGPRX2, which is expressed in connective tissue MCs (CTMCs) such as cutaneous and peritoneal MCs (PMCs). All five smHDPMs induced degranulation in wild-type PMCs but not in cells derived from Mrgprb2⁻/⁻ mice. These findings suggest that smHDPMs could serve as novel targets for the treatment of drug-resistant fungal and bacterial infections because of their ability to harness CTMCs' host defense functions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Mast Cells/metabolism , Nerve Tissue Proteins/metabolism , Peptides/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Small Molecule Libraries/pharmacology , 3T3 Cells , Animals , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Cell Degranulation/drug effects , Fungi/drug effects , Hep G2 Cells , Humans , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Mutation, Missense/genetics , Rats
12.
Antiviral Res ; 162: 178-185, 2019 02.
Article in English | MEDLINE | ID: mdl-30578797

ABSTRACT

The smallpox virus (variola) remains a bioterrorism threat since a majority of the human population has never been vaccinated. In the event of an outbreak, at least two drugs against different targets of variola are critical to circumvent potential viral mutants that acquire resistance. Vaccinia virus (VACV) is the model virus used in the laboratory for studying smallpox. The VACV processivity factor D4 is an ideal therapeutic target since it is both essential and specific for poxvirus replication. Recently, we identified a tripeptide (Gly-Phe-Ile) motif at the C-terminus of D4 that is conserved among poxviruses and is necessary for maintaining protein function. In the current work, a virtual screening for small molecule mimics of the tripeptide identified a thiophene lead that effectively inhibited VACV, cowpox virus, and rabbitpox virus in cell culture (EC50 = 8.4-19.7 µM) and blocked in vitro processive DNA synthesis (IC50 = 13.4 µM). Compound-binding to D4 was demonstrated through various biophysical methods and a dose-dependent retardation of the proteolysis of D4 proteins. This study highlights an inhibitor design strategy that exploits a susceptible region of the protein and identifies a novel scaffold for a broad-spectrum poxvirus inhibitor.


Subject(s)
Antiviral Agents/chemistry , Molecular Mimicry , Mutation , Oligopeptides/chemistry , Vaccinia virus/drug effects , Viral Proteins/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Inhibitory Concentration 50 , Thiophenes/chemistry , Vaccinia virus/physiology , Virus Replication/drug effects
13.
J Fungi (Basel) ; 4(1)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495524

ABSTRACT

Invasive candidiasis caused by Candida albicans and non-albicansCandida (NAC) present a serious disease threat. Although the echinocandins are recommended as the first line of antifungal drug class, resistance to these agents is beginning to emerge, demonstrating the need for new antifungal agents. Host defense peptides (HDP) exhibit potent antifungal activity, but as drugs they are difficult to manufacture efficiently, and they are often inactivated by serum proteins. HDP mimetics are low molecular weight non-peptide compounds that can alleviate these problems and were shown to be membrane-active against C. albicans and NAC. Here, we expand upon our previous works to describe the in vitro and in vivo activity of 11 new HDP mimetics that are active against C. albicans and NAC that are both sensitive and resistant to standard antifungal drugs. These compounds exhibit minimum inhibitory/fungicidal concentration (MIC/MFC) in the µg/mL range in the presence of serum and are inhibited by divalent cations. Rapid propidium iodide influx into the yeast cells following in vitro exposure suggested that these HDP mimetics were also membrane active. The lead compounds were able to kill C. albicans in an invasive candidiasis CD-1 mouse model with some mimetic candidates decreasing kidney burden by 3-4 logs after 24 h in a dose-dependent manner. The data encouraged further development of this new anti-fungal drug class for invasive candidiasis.

14.
Sci Rep ; 7(1): 4353, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28659617

ABSTRACT

Lethal systemic fungal infections of Candida species are increasingly common, especially in immune compromised patients. By in vitro screening of small molecule mimics of naturally occurring host defense peptides (HDP), we have identified several active antifungal molecules, which also exhibited potent activity in two mouse models of oral candidiasis. Here we show that one such compound, C4, exhibits a mechanism of action that is similar to the parent HDP upon which it was designed. Specifically, its initial interaction with the anionic microbial membrane is electrostatic, as its fungicidal activity is inhibited by cations. We observed rapid membrane permeabilization to propidium iodide and ATP efflux in response to C4. Unlike the antifungal peptide histatin 5, it did not require energy-dependent transport across the membrane. Rapid membrane disruption was observed by both fluorescence and electron microscopy. The compound was highly active in vitro against numerous fluconazole-resistant clinical isolates of C. albicans and non-albicans species, and it exhibited potent, dose-dependent activity in a mouse model of invasive candidiasis, reducing kidney burden by three logs after 24 hours, and preventing mortality for up to 17 days. Together the results support the development of this class of antifungal drug to treat invasive candidiasis.


Subject(s)
Antifungal Agents/pharmacology , Host-Derived Cellular Factors/pharmacology , Host-Pathogen Interactions , Membranes/drug effects , Peptides/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , Candida albicans/ultrastructure , Complement C4/immunology , Disease Resistance , Drug Resistance, Fungal , Host-Derived Cellular Factors/chemistry , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Microbial Sensitivity Tests , Peptides/chemistry
15.
Curr Top Med Chem ; 17(5): 576-589, 2017.
Article in English | MEDLINE | ID: mdl-27411325

ABSTRACT

New infection treatments are urgently needed to combat the rising threat of multi-drug resistant bacteria. Despite early clinical set-backs attention has re-focused on host defense proteins (HDPs), as potential sources for new and effective antimicrobial treatments. HDPs appear to act at multiple targets and their repertoire includes disruptive membrane and intracellular activities against numerous types of pathogens as well as immune modulatory functions in the host. Importantly, these novel activities are associated with a low potential for emergence of resistance and little crossresistance with other antimicrobial agents. Based on these properties, HDPs appear to be ideal candidates for new antibiotics; however, their development has been plagued by the many therapeutic limitations associated with natural peptidic agents. This review focuses on HDP mimetic approaches aimed to improve metabolic stability, pharmacokinetics, safety and manufacturing processes. Early efforts with ß-peptide or peptoid analogs focused on recreating stable facially amphiphilic structures but demonstrated that antimicrobial activity was modulated by more, complex structural properties. Several approaches have used lipidation to increase the hydrophobicity and membrane activity. One lead compound, LTX-109, has entered clinical study as a topical agent to treat impetigo and nasal decolonization. In a more significant departure from the amino acid like peptidomimetics, considerable effort has been directed at developing amphiphilic compounds that recapitulate the structural and biological properties of HDPs on small abiotic scaffolds. The lead compound from this approach, brilacidin, has completed two phase 2 studies as an intravenous agent for skin infections.


Subject(s)
Anti-Infective Agents/therapeutic use , Molecular Mimicry , Peptides/therapeutic use , Humans
16.
Bioorg Med Chem Lett ; 25(2): 378-83, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25496770

ABSTRACT

The Gram-negative bacterium Acinetobacter baumannii is an opportunistic pathogen in humans and infections are poorly treated by current therapy. Recent emergence of multi-drug resistant strains and the lack of new antibiotics demand an immediate action for development of new anti-Acinetobacter agents. To this end, oxidative phosphorylation (OxPhos) was identified as a novel target for drug discovery research. Consequently, a library of ∼10,000 compounds was screened using a membrane-based ATP synthesis assay. One hit identified was the 2-iminobenzimidazole 1 that inhibited the OxPhos of A. baumannii with a modestly high selectivity against mitochondrial OxPhos, and displayed an MIC of 25µM (17µg/mL) against the pathogen. The 2-iminobenzimidazole 1 was found to inhibit the type 1 NADH-quinone oxidoreductase (NDH-1) of A. baumannii OxPhos by a biochemical approach. Among various derivatives that were synthesized to date, des-hydroxy analog 5 is among the most active with a relatively tight SAR requirement for the N'-aminoalkyl side chain. Analog 5 also showed less cytotoxicity against NIH3T3 and HepG2 mammalian cell lines, demonstrating the potential for this series of compounds as anti-Acinetobacter agents. Additional SAR development and target validation is underway.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Cell Proliferation/drug effects , Oxidative Phosphorylation/drug effects , Small Molecule Libraries/pharmacology , Acinetobacter Infections/microbiology , Animals , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice , Microbial Sensitivity Tests , Molecular Structure , NIH 3T3 Cells , Quinone Reductases/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
17.
Antimicrob Agents Chemother ; 58(7): 3820-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752272

ABSTRACT

There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/chemistry , Candidiasis, Oral/microbiology , Peptides/pharmacology , 3T3 Cells , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Bacteria/drug effects , Cell Survival , Drug Resistance, Fungal , High-Throughput Screening Assays , Hyphae/chemistry , Immunocompromised Host , Male , Mice , Microbial Sensitivity Tests , Molecular Mimicry , Peptides/chemistry , beta-Defensins/pharmacology
18.
ACS Chem Biol ; 9(4): 967-75, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24491145

ABSTRACT

A series of self-associating foldamers have been designed as heparin reversal agents, as antidotes to prevent bleeding due to this potent antithrombotic agent. The foldamers have a repeating sequence of Lys-Sal, in which Sal is 5-amino-2-methoxy-benzoic acid. These foldamers are designed to self-associate along one face of an extended chain in a ß-sheet-like interaction. The methoxy groups were included to form intramolecular hydrogen bonds that preclude the formation of very large amyloid-like aggregates, while the positively charged Lys side chains were introduced to interact electrostatically with the highly anionic heparin polymer. The prototype compound (Lys-Sal)4 carboxamide weakly associates in aqueous solution at physiological salt concentration in a monomer-dimer-hexamer equilibrium. The association is greatly enhanced at either high ionic strength or in the presence of a heparin derivative, which is bound tightly. Variants of this foldamer are active in an antithrombin III-factor Xa assay, showing their potential as heparin reversal agents.


Subject(s)
Drug Design , Fibrinolytic Agents/chemical synthesis , Heparin/chemistry , Models, Biological , Circular Dichroism , Dose-Response Relationship, Drug , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Protein Binding/drug effects , Protein Conformation
19.
ACS Med Chem Lett ; 4(5): 481-485, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23814644

ABSTRACT

Two new series of aryl SMAMPs (synthetic mimics of antimicrobial peptides) with facially amphiphilic (FA) and disrupted amphiphilic (DA) topologies were designed and synthesized to directly assess the role of amphiphilicity on their antimicrobial activity against gram-positive and gram-negative bacteria in closely related structures. The FA SMAMPs displayed broad spectrum antimicrobial activity against both gram-positive S. aureus and gram-negative E. coli, whereas the DA SMAMPs, which contained a polar amide bond in between the hydrophobic moieties, only exhibited activity towards S. aureus with increasing hydrophobicity. The integy moment (IW) was used to quantify the amphiphilicity of the SMAMPs and confirmed that it is critical for the design of SMAMPs with gram-negative activity.

20.
ACS Med Chem Lett ; 4(9): 841-5, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-24936243

ABSTRACT

A novel series of synthetic mimics of antimicrobial peptides (SMAMPs) containing triazole linkers were assembled using click chemistry. While only moderately active in buffer alone, an increase in antimicrobial activity against Staphylococcus aureus and Escherichia coli was observed when these SMAMPs were administered in the presence of mouse serum. One compound had minimum inhibitory concentrations (MICs) of 0.39 µg/mL and 6.25 µg/mL, respectively, and an HC50 of 693 µg/mL. These values compared favorably to peptide-based antimicrobials. A correlation between the net positive charge and SMAMP antimicrobial activity was observed. The triazole linker, an amide surrogate, was found to provide better antimicrobial activity against both S. aureus and E. coli when compared to other analogues.

SELECTION OF CITATIONS
SEARCH DETAIL
...