Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(22): 12397-12413, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37941151

ABSTRACT

Hepatitis C virus (HCV) requires two cellular factors, microRNA-122 (miR-122) and poly(C) binding protein 2 (PCBP2), for optimal replication. These host factors compete for binding to the 5' end of the single-stranded RNA genome to regulate the viral replication cycle. To understand how they interact with the RNA, we measured binding affinities of both factors for an RNA probe representing the 5' 45 nucleotides of the HCV genome (HCV45). Isothermal titration calorimetry revealed two, unequal miR-122 binding sites in HCV45, high-affinity (S1) and low-affinity (S2), differing roughly 100-fold in binding affinity. PCBP2 binds a site overlapping S2 with affinity similar to miR-122 binding to S2. PCBP2 circularizes the genome by also binding to the 3' UTR, bridging the 5' and 3' ends of the genome. By competing with PCBP2 for binding at S2, miR-122 disrupts PCBP2-mediated genome circularization. We show that the viral RNA-dependent RNA polymerase, NS5B, also binds to HCV45, and that the binding affinity of NS5B is increased in the presence of miR-122, suggesting miR-122 promotes recruitment of the polymerase. We propose that competition between miR-122 and PCBP2 for HCV45 functions as a translation-to-replication switch, determining whether the RNA genome templates protein synthesis or RNA replication.


Subject(s)
Hepacivirus , Hepatitis C , MicroRNAs , Humans , 5' Untranslated Regions , Carrier Proteins/genetics , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Virus Replication/genetics
2.
Nat Commun ; 12(1): 2530, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953197

ABSTRACT

Flaviviruses use a ~70 nucleotide stem-loop structure called stem-loop A (SLA) at the 5' end of the RNA genome as a promoter for RNA synthesis. Flaviviral polymerase NS5 specifically recognizes SLA to initiate RNA synthesis and methylate the 5' guanosine cap. We report the crystal structures of dengue (DENV) and Zika virus (ZIKV) SLAs. DENV and ZIKV SLAs differ in the relative orientations of their top stem-loop helices to bottom stems, but both form an intermolecular three-way junction with a neighboring SLA molecule. To understand how NS5 engages SLA, we determined the SLA-binding site on NS5 and modeled the NS5-SLA complex of DENV and ZIKV. Our results show that the gross conformational differences seen in DENV and ZIKV SLAs can be compensated by the differences in the domain arrangements in DENV and ZIKV NS5s. We describe two binding modes of SLA and NS5 and propose an SLA-mediated RNA synthesis mechanism.


Subject(s)
Flavivirus/genetics , Promoter Regions, Genetic , RNA, Viral/chemistry , RNA, Viral/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Binding Sites , Crystallography, X-Ray , Dengue Virus/genetics , Protein Binding , RNA, Viral/metabolism , Virus Replication/physiology , Zika Virus/genetics
3.
Mol Pharmacol ; 71(5): 1241-50, 2007 May.
Article in English | MEDLINE | ID: mdl-17287402

ABSTRACT

Human red blood cells infected with the malaria parasite Plasmodium falciparum have markedly increased permeabilities to diverse organic and inorganic solutes. The plasmodial surface anion channel (PSAC), recently identified with electrophysiological methods, contributes to the uptake of many small solutes. In this study, we explored the effects of known PSAC antagonists on transport of different solutes. We were surprised to find that the transport of two solutes, phenyltrimethylammonium and isoleucine, was only partially inhibited by concentrations of three inhibitors that abolish sorbitol or alanine uptake. Residual uptake via endogenous transporters could not account for this finding because uninfected red blood cells (RBCs) do not have adequate permeability for these solutes. In infected RBCs, the residual uptake of these solutes could be abolished by higher concentrations of specific and nonspecific PSAC antagonists. Adding sorbitol or alanine, permeant solutes that do not exhibit residual uptake, could also abolish it. The residual uptake did not exhibit anomalous mole fraction behavior and had a steep activation energy. These observations exclude uptake via unrelated pathways and instead point to differences in how PSAC recognizes and transports various solutes. We propose a possible model that also may help explain the unique selectivity properties of PSAC.


Subject(s)
Furosemide/pharmacology , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Isoleucine/metabolism , Phlorhizin/pharmacology , Quaternary Ammonium Compounds/metabolism , Alanine/metabolism , Animals , Biological Transport/drug effects , Electrophysiology , Erythrocytes/parasitology , Humans , Models, Biological , Osmotic Pressure/drug effects , Patch-Clamp Techniques , Phenotype , Plasmodium falciparum/cytology , Plasmodium falciparum/drug effects , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...