Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(18): 20859-20866, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32282183

ABSTRACT

The growth of single crystals of Ge-rich SiGe alloys in an extended composition range is demonstrated using the nanomembrane (NM) platform and III-V growth substrates. Thin films of high-Ge-content SiGe films are grown on GaAs(001) to below the kinetic critical thickness and released from the growth substrate by selectively etching a release layer to relax the strain. The resulting crystalline nanomembranes at the natural lattice constant of the alloy are transferred to a new host and epitaxially overgrown at similar compositions to make a thicker single crystal. Straightforward critical-thickness calculations demonstrate that a very wide range of group IV alloys, including those involving Sn, can be fabricated using the NM platform and the proper choice of III-V substrate. Motivations for making new group IV alloys center on band gap engineering for the development of novel group IV optoelectronic structures and devices.

2.
ACS Appl Mater Interfaces ; 9(48): 42372-42382, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29129058

ABSTRACT

Methods to integrate different crystal orientations, strain states, and compositions of semiconductors in planar and preferably flexible configurations may enable nontraditional sensing-, stimulating-, or communication-device applications. We combine crystalline-silicon nanomembranes, patterning, membrane transfer, and epitaxial growth to demonstrate planar arrays of different orientations and strain states of Si in a single membrane, which is then readily transferable to other substrates, including flexible supports. As examples, regions of Si(001) and Si(110) or strained Si(110) are combined to form a multicomponent, single substrate with high-quality narrow interfaces. We perform extensive structural characterization of all interfaces and measure charge-carrier mobilities in different regions of a 2D quilt. The method is readily extendable to include varying compositions or different classes of materials.

3.
Nat Commun ; 4: 1339, 2013.
Article in English | MEDLINE | ID: mdl-23299889

ABSTRACT

The electrical properties of nanostructures are extremely sensitive to their surface condition. In very thin two-dimensional crystalline-semiconductor sheets, termed nanomembranes, the influence of the bulk is diminished, and the electrical conductance becomes exquisitely responsive to the structure of the surface and the type and density of defects there. Its understanding therefore requires a precise knowledge of the surface condition. Here we report measurements, using nanomembranes, that demonstrate direct charge transport through the π* band of the clean reconstructed Si(001) surface. We determine the charge carrier mobility in this band. These measurements, performed in ultra-high vacuum to create a truly clean surface, lay the foundation for a quantitative understanding of the role of extended or localized surface states, created by surface structure, defects or adsorbed atoms/molecules, in modifying charge transport through semiconductor nanostructures.

4.
ACS Nano ; 5(7): 5532-42, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21682324

ABSTRACT

Strain in a material changes the lattice constant and thereby creates a material with new properties relative to the unstrained, but chemically identical, material. The ability to alter the strain (its magnitude, direction, extent, periodicity, symmetry, and nature) allows tunability of these new properties. A recent development, crystalline nanomembranes, offers a powerful platform for using and tuning strain to create materials that have unique properties, not achievable in bulk materials or with conventional processes. Nanomembranes, because of their thinness, enable elastic strain sharing, a process that introduces large amounts of strain and unique strain distributions in single-crystal materials, without exposing the material to the formation of extended defects. We provide here prescriptions for making new strained materials using crystal symmetry as the driver: we calculate the strain distributions in flat nanomembranes for two-fold and four-fold elastically symmetric materials. We show that we can controllably tune the amount of strain and the asymmetry of the strain distribution in elastically isotropic and anisotropic materials uniformly over large areas. We perform the experimental demonstration with a trilayer Si(110)/Si((1-x))Ge(x)(110)/Si(110) nanomembrane: an elastically two-fold symmetric system in which we can transfer strain that is biaxially isotropic. We are thus able to make uniformly strained materials that cannot be made any other way.

5.
Nanoscale Res Lett ; 6(1): 402, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21711931

ABSTRACT

Because of the large surface-to-volume ratio, the conductivity of semiconductor nanostructures is very sensitive to surface chemical and structural conditions. Two surface modifications, vacuum hydrogenation (VH) and hydrofluoric acid (HF) cleaning, of silicon nanomembranes (SiNMs) that nominally have the same effect, the hydrogen termination of the surface, are compared. The sheet resistance of the SiNMs, measured by the van der Pauw method, shows that HF etching produces at least an order of magnitude larger drop in sheet resistance than that caused by VH treatment, relative to the very high sheet resistance of samples terminated with native oxide. Re-oxidation rates after these treatments also differ. X-ray photoelectron spectroscopy measurements are consistent with the electrical-conductivity results. We pinpoint the likely cause of the differences.PACS: 73.63.-b, 62.23.Kn, 73.40.Ty.

6.
ACS Nano ; 3(7): 1683-92, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19499933

ABSTRACT

Ultrathin silicon-on-insulator, composed of a crystalline sheet of silicon bounded by native oxide and a buried oxide layer, is extremely resistive because of charge trapping at the interfaces between the sheet of silicon and the oxide. After chemical modification of the top surface with hydrofluoric acid (HF), the sheet resistance drops to values below what is expected based on bulk doping alone. We explain this behavior in terms of surface-induced band structure changes combined with the effective isolation from bulk properties created by crystal thinness.

SELECTION OF CITATIONS
SEARCH DETAIL
...