Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Biol Int ; 26(5): 393-405, 2002.
Article in English | MEDLINE | ID: mdl-12095225

ABSTRACT

Circular plasmids in yeast carrying only an origin of DNA replication (ARS) exhibit maternal inheritance bias (MIB) and are poorly transmitted from mother to daughter cell during division. A variety of different sequences that overcome MIB have been described, including centromeric sequences (CEN), telomere-associated repeats, silencer sequences and a specific system encoded by the endogenous 2 micron circle plasmid requiring the cis-acting locus STB and the proteins Rep1 and Rep2. In each case, DNA segregation between mother and daughter cells is dependent on DNA-protein interactions. Using plasmids carrying multiple copies of a lac repressor binding sequence, we have localised DNA molecules in the yeast nucleus using a green fluorescent protein (GFP)-lac repressor fusion protein. We compared GFP localised plasmids carrying a centromere sequence with plasmids based on 2 micron circle carrying or lacking the STB sequences required for their segregation. We show that GFP localised plasmid carrying the complete STB locus co-localises with the plasmid proteins Rep1 and Rep2 to discrete chromatin sites. These sites are distinct from both the telomeres and from sites of cohesin binding. Deletion of the region of STB essential for the stability of the plasmid, leads to a loss of plasmid association with chromatin, relocalisation of plasmids towards the nuclear periphery, and a decrease in the Rep1 protein associated with the plasmid. We conclude that specific plasmid localisation is likely to be important in the overcoming of MIB in yeast.


Subject(s)
DNA, Fungal/physiology , Plasmids/physiology , Cell Division , Cell Nucleolus , Cell Nucleus/metabolism , Diploidy , Haploidy , Saccharomyces cerevisiae/genetics , Spindle Apparatus , Telomere
2.
Mol Cell Biol ; 22(12): 4218-29, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12024034

ABSTRACT

The stable maintenance of the 2 microm circle plasmid depends on its ability to overcome intrinsic maternal inheritance bias, which in yeast normally results in the failure to transmit DNA molecules efficiently to daughter cells. In addition to the plasmid proteins Rep1 and Rep2 acting on the plasmid DNA locus STB, it is likely that other chromosomally encoded yeast proteins are required. We have isolated mutants of yeast unable to maintain 2 microm and found that RSC2 is essential for 2 microm to overcome maternal inheritance bias. Rsc2 is part of a multisubunit RSC chromatin remodeling complex, and we show that in the absence of Rsc2 the chromatin structure of the STB region is significantly altered and the Rep1 protein loses its normal localization to subnuclear foci. Rsc1, a closely related homolog of Rsc2 present in an alternative form of the RSC complex, is not required for 2 microm maintenance and does not replace the requirement for Rsc2 when overexpressed. This represents the first specific role for Rsc2 that has been related to a change in chromatin structure, as well as the first direct evidence linking chromatin structure to 2 microm segregation.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Nucleosomes/metabolism , Plasmids/metabolism , Saccharomyces cerevisiae Proteins/genetics , Chromatin/genetics , Chromatin/ultrastructure , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genetic Complementation Test , Mutation , Plasmids/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...