Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
PLOS Digit Health ; 3(1): e0000318, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190384

ABSTRACT

INTRODUCTION: Patients diagnosed with Interstitial Lung Diseases (ILD) use devices to self-monitor their health and well-being. Little is known about the range of devices, selection, frequency and terms of use and overall utility. We sought to quantify patients' usage and experiences with home digital devices, and further evaluate their perceived utility and barriers to adaptation. METHODS: A team of expert clinicians and patient partners interested in self-management approaches designed a 48-question cross-sectional electronic survey; specifically targeted at individuals diagnosed with ILD. The survey was critically appraised by the interdisciplinary self-management group at Royal Devon University Hospitals NHS Foundation Trust during a 6-month validation process. The survey was open for participation between September 2021 and December 2022, and responses were collected anonymously. Data were analysed descriptively for quantitative aspects and through thematic analysis for qualitative input. RESULTS: 104 patients accessed the survey and 89/104 (86%) reported a diagnosis of lung fibrosis, including 46/89 (52%) idiopathic pulmonary fibrosis (IPF) with 57/89 (64%) of participants diagnosed >3 years and 59/89 (66%) female. 52/65(80%) were in the UK; 33/65 (51%) reported severe breathlessness medical research council MRC grade 3-4 and 32/65 (49%) disclosed co-morbid arthritis or joint problems. Of these, 18/83 (22%) used a hand- held spirometer, with only 6/17 (35%) advised on how to interpret the readings. Pulse oximetry devices were the most frequently used device by 35/71 (49%) and 20/64 (31%) measured their saturations more than once daily. 29/63 (46%) of respondents reported home-monitoring brought reassurance; of these, for 25/63 (40%) a feeling of control. 10/57 (18%) felt it had a negative effect, citing fluctuating readings as causing stress and 'paranoia'. The most likely help-seeking triggers were worsening breathlessness 53/65 (82%) and low oxygen saturation 43/65 (66%). Nurse specialists were the most frequent source of help 24/63 (38%). Conclusion: Patients can learn appropriate technical skills, yet perceptions of home-monitoring are variable; targeted assessment and tailored support is likely to be beneficial.

2.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L487-L499, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37643008

ABSTRACT

Transforming growth factor-ß1 (TGFß1) is the key profibrotic cytokine in idiopathic pulmonary fibrosis (IPF), but the primary source of this cytokine in this disease is unknown. Platelets have abundant stores of TGFß1, although the role of these cells in IPF is ill-defined. In this study, we investigated whether platelets, and specifically platelet-derived TGFß1, mediate IPF disease progression. Patients with IPF and non-IPF patients were recruited to determine platelet reactivity, and separate cohorts of patients with IPF were followed for mortality. To study whether platelet-derived TGFß1 modulates pulmonary fibrosis (PF), mice with a targeted deletion of TGFß1 in megakaryocytes and platelets (TGFß1fl/fl.PF4-Cre) were used in the well-characterized bleomycin-induced pulmonary fibrosis (PF) animal model. In a discovery cohort, we found significantly higher mortality in patients with IPF who had elevated platelet counts within the normal range. However, our validation cohort did not confirm this observation, despite significantly increased platelets, neutrophils, active TGFß1, and CCL5, a chemokine produced by inflammatory cells, in the blood, lung, and bronchoalveolar lavage (BAL) of patients with IPF. In vivo, we showed that despite platelets being readily detected within the lungs of bleomycin-treated mice, neither the degree of pulmonary inflammation nor fibrosis was significantly different between TGFß1fl/fl.PF4-Cre and control mice. Our results demonstrate for the first time that platelet-derived TGFß1 does not significantly mediate inflammation or fibrosis in a PF animal model. Furthermore, our human studies revealed blood platelet counts do not consistently predict mortality in IPF but other platelet-derived mediators, such as C-C chemokine ligand 5 (CCL5), may promote neutrophil recruitment and human IPF.NEW & NOTEWORTHY Platelets are a rich source of profibrotic TGFß; however, the role of platelets in idiopathic pulmonary fibrosis (IPF) is unclear. We identified that patients with IPF have significantly more platelets, neutrophils, and active TGFß in their airways than control patients. Using an animal model of IPF, we demonstrated that platelet-derived TGFß does not significantly drive lung fibrosis or inflammation. Our findings offer a better understanding of platelets in both human and animal studies of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Mice , Animals , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Transforming Growth Factor beta1/pharmacology , Fibrosis , Transforming Growth Factor beta , Bleomycin/adverse effects , Inflammation/pathology , Transforming Growth Factors/adverse effects
4.
EClinicalMedicine ; 55: 101758, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36483266

ABSTRACT

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disorder with a variable disease trajectory. The aim of this study was to assess the potential of neutrophil-to-lymphocyte ratio (NLR) to predict outcomes in IPF. Methods: We adopted a two-stage discovery (n = 71) and validation (n = 134) design using patients from the UCL partners (UCLp) cohort. We then combined discovery and validation cohorts and included an additional 794 people with IPF, using real-life data from 5 other UK centers, to give a combined cohort of 999 patients. Data were collected from patients presenting over a 13-year period (2006-2019) with mean follow up of 3.7 years (censoring: 2018-2020). Findings: In the discovery analysis, we showed that high values of NLR (>/ = 2.9 vs < 2.9) were associated with increased risk of mortality in IPF (HR 2.04, 95% CI 1.09-3.81, n = 71, p = 0.025). This was confirmed in the validation (HR 1.91, 95% CI 1.15-3.18, n = 134, p = 0.0114) and combined cohorts (HR 1.65, n = 999, 95% CI 1.39-1.95; p < 0·0001). NLR correlated with GAP stage and GAP index (p < 0.0001). Stratifying patients by NLR category (low/high) showed significant differences in survival for GAP stage 2 (p < 0.0001), however not for GAP stage 1 or 3. In a multivariate analysis, a high NLR was an independent predictor of mortality/progression after adjustment for individual GAP components and steroid/anti-fibrotic use (p < 0·03). Furthermore, incorporation of baseline NLR in a modified GAP-stage/index, GAP-index/stage-plus, refined prognostic ability as measured by concordance (C)-index. Interpretation: We have identified NLR as a widely available test that significantly correlates with lung function, can predict outcomes in IPF and refines cohort staging with GAP. NLR may allow timely prioritisation of at-risk patients, even in the absence of lung function. Funding: Breathing Matters, GSK, CF Trust, BLF-Asthma, MRC, NIHR Alpha-1 Foundation.

5.
BMC Pulm Med ; 22(1): 485, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550475

ABSTRACT

BACKGROUND: Cardiopulmonary exercise testing (CPET), and its primary outcome of peak oxygen uptake (VO2peak), are acknowledged as biomarkers in the diagnostic and prognostic management of interstitial lung disease (ILD). However, the validity and repeatability of CPET in those with ILD has yet to be fully characterised, and this study fills this evidence gap. METHODS: Twenty-six people with ILD were recruited, and 21 successfully completed three CPETs. Of these, 17 completed two valid CPETs within a 3-month window, and 11 completed two valid CPETs within a 6-month window. Technical standards from the European Respiratory Society established validity, and repeatability was determined using mean change, intraclass correlation coefficient and typical error. RESULTS: Every participant (100%) who successfully exercised to volitional exhaustion produced a maximal, and therefore valid, CPET. Approximately 20% of participants presented with a plateau in VO2, the primary criteria for establishing a maximal effort. The majority of participants otherwise presented with secondary criteria of respiratory exchange ratios in excess of 1.05, and maximal heart rates in excess of their predicted values. Repeatability analyses identified that the typical error (expressed as percent of coefficient of variation) was 20% over 3-months in those reaching volitional exhaustion. CONCLUSION: This work has, for the first time, fully characterised how patients with ILD respond to CPET in terms of primary and secondary verification criteria, and generated novel repeatability data that will prove useful in the assessment of disease progression, and future evaluation of therapeutic regimens where VO2peak is used as an outcome measure.


Subject(s)
Exercise Test , Lung Diseases, Interstitial , Humans , Respiratory Function Tests , Respiratory Physiological Phenomena , Lung Diseases, Interstitial/diagnosis , Oxygen Consumption/physiology
6.
Front Med (Lausanne) ; 8: 668024, 2021.
Article in English | MEDLINE | ID: mdl-34888316

ABSTRACT

Background: Diversity in response on exposure to severe acute respiratory syndrome coronavirus 2 may be related to the innate immune response in the elderly. The mucin MUC5B is an important component of the innate immune response and expression levels are associated with the MUC5B promoter polymorphism, rs35705950. The high expressing T-allele is a risk allele for the non-infectious aging lung disease idiopathic pulmonary fibrosis (IPF). We investigated if MUC5B rs35705950 associates with severe COVID-19. Methods: In this retrospective candidate gene case-control study we recruited 108 Dutch patients (69% male, median age 66 years, 77% white) requiring hospitalization for COVID-19 (22% ICU stay, 24% died). For validation, genotypes were obtained from the UK-Biobank (n = 436, 57% male, median age 70 years, 27% died), for replication data from the severe COVID-19 GWAS group from Italy (n = 835) and Spain (n = 775) was used, each with a control cohort (n = 356,735, n = 1,255, n = 950, respectively). MUC5B association analysis was performed including adjustment for age and sex. Results: The rs35705950 T-allele frequency was significantly lower in Dutch white patients (n = 83) than in controls (0.04 vs. 0.10; p = 0.02). This was validated in the UK biobank cohort (0.08 vs. 0.11; p = 0.001). While age and sex differed significantly between cases and control, comparable results were obtained with age and sex as confounding variables in a multivariate analysis. The association was replicated in the Italian (p = 0.04), and Spanish (p = 0.03) case-control cohorts. Meta-analysis showed a negative association for the T-allele with COVID-19 (OR = 0.75 (CI: 0.67-0.85); p = 6.63 × 10-6). Conclusions: This study shows that carriage of the T-allele of MUC5B rs35705950 confers protection from development of severe COVID-19. Because the T-allele is a known risk allele for IPF, this study provides further evidence for the existence of trade-offs between optimal mucin expression levels in the aging lung.

7.
BMJ Open Respir Res ; 8(1)2021 11.
Article in English | MEDLINE | ID: mdl-34794958

ABSTRACT

The factors determining disease course and survival in fibrotic hypersensitivity pneumonitis (fHP) have not been fully elucidated.The aim of this study was to describe the characteristics of patients with fHP in a real-world cohort and investigate factors associated with worse outcomes. We aimed to explore the use of neutrophil to lymphocyte ratio (NLR) and peripheral blood monocyte levels in predicting mortality. METHODS: A retrospective, multicentre, observational UK cohort study. RESULTS: Patients with fHP were significantly younger than those with idiopathic pulmonary fibrosis (IPF) (median age fHP 73 vs IPF 75 years) and were much more likely to be woman (fHP 61% vs IPF 26%). In almost half of all fHP cases (49%, n=104/211), no causative antigen was identified from either the history or specific antigen testing. Overall, fHP was associated with a better survival than IPF, although median survival of both groups was poor (fHP 62 months vs IPF 52 months).IPF survival in patients with a high NLR was significantly lower than those with a low NLR (44 vs 83 months). A monocyte count ≥0.95 K/uL also predicted significantly poorer outcomes for patients with IPF compared with <0.95 K/uL (33 vs 57 months). In contrast, NLR and monocyte count did not predict survival in the fHP cohort. CONCLUSIONS: Although fHP has a statistically lower mortality than IPF, absolute survival time of both conditions is poor. High baseline NLR and absolute monocyte counts predict worse survival in IPF but not in fHP, highlighting the potential for divergence in their pathogenic mechanisms.


Subject(s)
Alveolitis, Extrinsic Allergic , Neutrophils , Aged , Alveolitis, Extrinsic Allergic/diagnosis , Cohort Studies , Female , Humans , Lymphocytes , Monocytes , Retrospective Studies
8.
Lancet Respir Med ; 9(12): 1450-1466, 2021 12.
Article in English | MEDLINE | ID: mdl-34688434

ABSTRACT

Many nations are pursuing the rollout of SARS-CoV-2 vaccines as an exit strategy from unprecedented COVID-19-related restrictions. However, the success of this strategy relies critically on the duration of protective immunity resulting from both natural infection and vaccination. SARS-CoV-2 infection elicits an adaptive immune response against a large breadth of viral epitopes, although the duration of the response varies with age and disease severity. Current evidence from case studies and large observational studies suggests that, consistent with research on other common respiratory viruses, a protective immunological response lasts for approximately 5-12 months from primary infection, with reinfection being more likely given an insufficiently robust primary humoral response. Markers of humoral and cell-mediated immune memory can persist over many months, and might help to mitigate against severe disease upon reinfection. Emerging data, including evidence of breakthrough infections, suggest that vaccine effectiveness might be reduced significantly against emerging variants of concern, and hence secondary vaccines will need to be developed to maintain population-level protective immunity. Nonetheless, other interventions will also be required, with further outbreaks likely to occur due to antigenic drift, selective pressures for novel variants, and global population mobility.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 , Immunologic Memory , Vaccine Efficacy , Antigenic Drift and Shift , COVID-19/immunology , COVID-19/prevention & control , Humans , Reinfection , SARS-CoV-2 , Vaccination
9.
Front Immunol ; 12: 691957, 2021.
Article in English | MEDLINE | ID: mdl-34484188

ABSTRACT

Neutrophil migration into the airways is an important process to fight infection and is mediated by cell adhesion molecules. The intercellular adhesion molecules, ICAM-1 (CD54) and ICAM-2 (CD102) are known ligands for the neutrophil integrins, lymphocyte function associated antigen (LFA)-1 (αLß2; CD11a/CD18), and macrophage-1 antigen (Mac-1;αMß2;CD11b/CD18) and are implicated in leukocyte migration into the lung. However, it is ill-defined how neutrophils exit the lung and the role for ICAMs in trans-epithelial migration (TEpM) across the bronchial or alveolar epithelium. We found that human and murine alveolar epithelium expressed ICAM-1, whilst the bronchial epithelium expressed ICAM-2, and both were up-regulated during inflammatory stimulation in vitro and in inflammatory lung diseases such as cystic fibrosis. Although ß2 integrins interacting with ICAM-1 and -2 mediated neutrophil migration across human bronchial epithelium in vitro, neither ICAM-2 nor LFA-1 binding of ICAM-1 mediated murine neutrophil migration into the lung or broncho-alveolar space during LPS-induced inflammation in vivo. Furthermore, TEpM of neutrophils themselves resulted in increased epithelial junctional permeability and reduced barrier function in vitro. This suggests that although ß2 integrins interacting with ICAMs may regulate low levels of neutrophil traffic in healthy lung or early in inflammation when the epithelial barrier is intact; these interactions may be redundant later in inflammation when epithelial junctions are disrupted and no longer limit TEpM.


Subject(s)
Antigens, CD/immunology , Cell Adhesion Molecules/immunology , Intercellular Adhesion Molecule-1/immunology , Neutrophils/immunology , Respiratory Mucosa/immunology , Animals , CD18 Antigens/immunology , Cell Movement , Cells, Cultured , Epithelial Cells/immunology , Humans , Inflammation/immunology , Lung/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/physiology , Up-Regulation
10.
Front Med (Lausanne) ; 8: 704222, 2021.
Article in English | MEDLINE | ID: mdl-34368196

ABSTRACT

Pulmonary fibrosis (PF) is a serious lung disease which can result from known genetic or environmental exposures but is more commonly idiopathic (IPF). In familial PF (FPF), the majority of identified causal genes play key roles in the maintenance of telomeres, the protective end structures of chromosomes. Recent evidence suggests that short telomeres may also be implicated causally in a significant proportion of idiopathic cases. The possible involvement of herpes viruses in PF disease incidence and progression has been examined for many years, with some studies showing strong, statistically significant associations and others reporting no involvement. Evidence is thus polarized and remains inconclusive. Here we review the reported involvement of herpes viruses in PF in both animals and humans and present a summary of the evidence to date. We also present several possible mechanisms of action of the different herpes viruses in PF pathogenesis, including potential contributions to telomere attrition and cellular senescence. Evidence for antiviral treatment in PF is very limited but suggests a potential benefit. Further work is required to definitely answer the question of whether herpes viruses impact PF disease onset and progression and to enable the possible use of targeted antiviral treatments to improve clinical outcomes.

11.
BMJ Open Respir Res ; 8(1)2021 04.
Article in English | MEDLINE | ID: mdl-33926958

ABSTRACT

INTRODUCTION: Cardiopulmonary exercise testing (CPET) provides a series of biomarkers, such as peak oxygen uptake, which could assess the development of disease status in interstitial lung disease (ILD). However, despite use in research and clinical settings, the feasibility of CPET in this patient group has yet to be established. METHODS: Twenty-six patients with ILD (19 male) were recruited to this study. Following screening for contraindications to maximal exercise, participants underwent an incremental CPET to volitional exhaustion. Feasibility of CPET was assessed by the implementation, practicality, acceptability and demand, thus providing clinical-driven and patient-driven information on this testing procedure. RESULTS: Of the 26 recruited participants, 24 successfully completed at least one CPET, with 67/78 prospective tests being completed. Contraindications included hypertension, low resting oxygen saturation and recent pulmonary embolism. Of the CPETs undertaken, 63% successfully reached volitional exhaustion, with 31% being terminated early by clinicians due to excessive desaturation. Quantitative and qualitative feedback from participants revealed a positive experience of CPET and desire for it to be included as a future monitoring tool. CONCLUSION: CPET is feasible in patients with ILD. Identification of common clinical contraindications, and understanding of patient perspectives will allow for effective design of future studies utilising CPET as a monitoring procedure.


Subject(s)
Exercise Test , Lung Diseases, Interstitial , Feasibility Studies , Humans , Lung Diseases, Interstitial/diagnosis , Male , Prospective Studies
12.
Antioxid Redox Signal ; 35(7): 551-579, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33736455

ABSTRACT

Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-ß-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.


Subject(s)
Hydrogen Sulfide , Lung Diseases , Aging , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/metabolism , Humans , Hydrogen Sulfide/metabolism , Lung Diseases/drug therapy , Sulfides/metabolism
13.
Diagn Microbiol Infect Dis ; 100(1): 115315, 2021 May.
Article in English | MEDLINE | ID: mdl-33571861

ABSTRACT

The genotyping of pathogens within cystic fibrosis cohorts is an important process, enabling the detection of transmissible and clinically-important strains. Traditionally this has been via culture-dependent processes. However, culture-independent investigation of respiratory samples is becoming more common, with such approaches highlighting the limitations of culture-based methods. In this study we describe the culture-independent application of multilocus sequence typing (MLST) for Pseudomonas aeruginosa, performed on DNA extracted from the sputa of cystic fibrosis patients. We compare the output to conventional culture-dependent MLST applied to the same samples and demonstrate high concordance. Culture-independent MLST enabled genotyping of culture-negative samples in patients from whom P. aeruginosa was intermittently isolated, and revealed the hidden presence of transmissible strains. Culture-independent MLST is also capable of highlighting samples containing multiple strains, albeit inconsistently. We conclude that culture-independent MLST can be a useful genotyping tool for screening cohorts and identifying patients that warrant further detailed investigation.


Subject(s)
Bacterial Typing Techniques/methods , Cross Infection , Multilocus Sequence Typing/methods , Pseudomonas Infections , Pseudomonas aeruginosa/genetics , Cohort Studies , Cross Infection/diagnosis , Cross Infection/microbiology , Cystic Fibrosis/complications , Humans , Pseudomonas Infections/complications , Pseudomonas Infections/diagnosis , Pseudomonas Infections/microbiology , Sputum/microbiology
14.
Lancet Respir Med ; 9(3): 285-294, 2021 03.
Article in English | MEDLINE | ID: mdl-33197388

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease accounting for 1% of UK deaths. In the familial form of pulmonary fibrosis, causal genes have been identified in about 30% of cases, and a majority of these causal genes are associated with telomere maintenance. Prematurely shortened leukocyte telomere length is associated with IPF and chronic obstructive pulmonary disease (COPD), a disease with similar demographics and shared risk factors. Using mendelian randomisation, we investigated evidence supporting a causal role for short telomeres in IPF and COPD. METHODS: Mendelian randomisation inference of telomere length causality was done for IPF (up to 1369 cases) and COPD (13 538 cases) against 435 866 controls of European ancestry in UK Biobank. Polygenic risk scores were calculated and two-sample mendelian randomisation analyses were done using seven genetic variants previously associated with telomere length, with replication analysis in an IPF cohort (2668 cases vs 8591 controls) and COPD cohort (15 256 cases vs 47 936 controls). FINDINGS: In the UK Biobank, a genetically instrumented one-SD shorter telomere length was associated with higher odds of IPF (odds ratio [OR] 4·19, 95% CI 2·33-7·55; p=0·0031) but not COPD (1·07, 0·88-1·30; p=0·51). Similarly, an association was found in the IPF replication cohort (12·3, 5·05-30·1; p=0·0015) and not in the COPD replication cohort (1·04, 0·71-1·53; p=0·83). Meta-analysis of the two-sample mendelian randomisation results provided evidence inferring that shorter telomeres cause IPF (5·81 higher odds of IPF, 95% CI 3·56-9·50; p=2·19 × 10-12). There was no evidence to infer that telomere length caused COPD (OR 1·07, 95% CI 0·90-1·27; p=0·46). INTERPRETATION: Cellular senescence is hypothesised as a major driving force in IPF and COPD; telomere shortening might be a contributory factor in IPF, suggesting divergent mechanisms in COPD. Defining a key role for telomere shortening enables greater focus in telomere-related diagnostics, treatments, and the search for a cure in IPF. Investigation of therapies that improve telomere length is warranted. FUNDING: Medical Research Council.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Telomere Shortening/genetics , Aged , Case-Control Studies , Causality , Female , Humans , Idiopathic Pulmonary Fibrosis/epidemiology , Male , Mendelian Randomization Analysis , Middle Aged , Pulmonary Disease, Chronic Obstructive/epidemiology , Risk Factors
15.
J Tissue Eng Regen Med ; 14(4): 645-649, 2020 04.
Article in English | MEDLINE | ID: mdl-32068954

ABSTRACT

Platelets are a recognised potent source of transforming growth factor-ß1 (TGFß1), a cytokine known to promote wound healing and regeneration by stimulating dermal fibroblast proliferation and extracellular matrix deposition. Platelet lysate has been advocated as a novel personalised therapeutic to treat persistent wounds, although the precise platelet-derived growth factors responsible for these beneficial effects have not been fully elucidated. The aim of this study was to investigate the specific role of platelet-derived TGFß1 in cutaneous wound healing. Using a transgenic mouse with a targeted deletion of TGFß1 in megakaryocytes and platelets (TGFß1fl/fl .PF4-Cre), we show for the first time that platelet-derived TGFß1 contributes to epidermal and dermal thickening and cellular turnover after excisional skin wounding. In vitro studies demonstrate that human dermal fibroblasts stimulated with platelet lysate containing high levels of platelet-derived TGFß1 did not exhibit enhanced collagen deposition or proliferation, suggesting that platelet-derived TGFß1 is not a key promoter of these wound healing processes. Interestingly, human keratinocytes displayed enhanced TGFß1-driven proliferation in response to platelet lysate, reminiscent of our in vivo findings. In summary, our novel findings define and emphasise an important role of platelet-derived TGFß1 in epidermal remodelling and regeneration processes during cutaneous wound healing.


Subject(s)
Blood Platelets/metabolism , Cell Proliferation , Keratinocytes/metabolism , Skin , Transforming Growth Factor beta1/metabolism , Wound Healing , Animals , Mice , Mice, Knockout , Skin/injuries , Skin/metabolism , Transforming Growth Factor beta1/genetics
16.
J Med Chem ; 62(5): 2499-2507, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30735377

ABSTRACT

RE31 is a 31-nt DNA aptamer, consisting of the G-quadruplex and a duplex domain, which is able to effectively prolong thrombin time. This article reports on the influence of certain modified nucleotide residues on thermodynamic and biological properties as well as the folding topology of RE31. Particularly, the effect of the presence of nucleosides in unlocked nucleic acid (UNA), locked nucleic acid (LNA), or ß-l-RNA series was evaluated. The studies presented herein show that all modified residues can influence thermal and biological stabilities of G-quadruplex in a position-dependent manner. The aptamers modified simultaneously with UNA at the T15 position and LNAs in the duplex part possess the highest value of melting temperature and a 2-fold higher anticoagulant effect. Importantly, RE31 variants modified with nucleosides in UNA, LNA, or ß-l-RNA series exhibit unchanged G-quadruplex folding topology. Crucially, introduction of any of the modified residues into RE31 causes prolongation of aptamer stability in human serum.


Subject(s)
Aptamers, Nucleotide/pharmacology , Nucleic Acid Conformation , Thermodynamics , Amides/metabolism , Aptamers, Nucleotide/blood , Aptamers, Nucleotide/chemistry , Blood Coagulation/drug effects , Drug Stability , Humans , Surface Plasmon Resonance , Thrombin/metabolism
17.
Nanomedicine (Lond) ; 13(15): 1923-1937, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30124363

ABSTRACT

AIM: Achieving reliably high production of reactive oxygen species (ROS) in photodynamic therapy (PDT) remains challenging. Graphene quantum dots (GQDs) hold great promise for PDT. However, the photochemical processes leading to GQD-derived ROS generation have not yet been fully elucidated. MATERIALS & METHODS: Physicochemical characteristics of GQDs were comprehensively investigated, including electron paramagnetic resonance analysis of singlet oxygen production. Dark toxicity was assessed in vitro and in vivo. RESULTS: GQDs demonstrated excellent photoluminescent features, corrosion resistance, high water solubility, high photo/pH-stability, in vitro and in vivo biocompatibility and very efficient singlet oxygen/ROS generation. CONCLUSION: The enhanced ROS generation, combined with good biocompatibility and minimal toxicity in vitro and in vivo support the potential of GQDs for future PDT application.


Subject(s)
Biocompatible Materials/chemistry , Graphite/chemistry , Photochemotherapy/methods , Quantum Dots/chemistry , 3T3 Cells , Animals , Biocompatible Materials/toxicity , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Stability , Hydrogen-Ion Concentration , Luminescence , Male , Mice , Particle Size , Quantum Dots/toxicity , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism , Solubility
18.
Thorax ; 2017 Aug 26.
Article in English | MEDLINE | ID: mdl-28844058

ABSTRACT

While Pseudomonas aeruginosa (PA) cross-infection is well documented among patients with cystic fibrosis (CF), the equivalent risk among patients with non-CF bronchiectasis (NCFB) is unclear, particularly those managed alongside patients with CF. We performed analysis of PA within a single centre that manages an unsegregated NCFB cohort alongside a segregated CF cohort. We found no evidence of cross-infection between the two cohorts or within the segregated CF cohort. However, within the unsegregated NCFB cohort, evidence of cross-infection was found between three (of 46) patients. While we do not presently advocate any change in the management of our NCFB cohort, longitudinal surveillance is clearly warranted.

20.
Am J Respir Crit Care Med ; 196(4): 479-493, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28661183

ABSTRACT

RATIONALE: Fibrosis after lung injury is related to poor outcome, and idiopathic pulmonary fibrosis (IPF) can be regarded as an exemplar. Vascular endothelial growth factor (VEGF)-A has been implicated in this context, but there are conflicting reports as to whether it is a contributory or protective factor. Differential splicing of the VEGF-A gene produces multiple functional isoforms including VEGF-A165a and VEGF-A165b, a member of the inhibitory family. To date there is no clear information on the role of VEGF-A in IPF. OBJECTIVES: To establish VEGF-A isoform expression and functional effects in IPF. METHODS: We used tissue sections, plasma, and lung fibroblasts from patients with IPF and control subjects. In a bleomycin-induced lung fibrosis model we used wild-type MMTV mice and a triple transgenic mouse SPC-rtTA+/-TetoCre+/-LoxP-VEGF-A+/+ to conditionally induce VEGF-A isoform deletion specifically in the alveolar type II (ATII) cells of adult mice. MEASUREMENTS AND MAIN RESULTS: IPF and normal lung fibroblasts differentially expressed and responded to VEGF-A165a and VEGF-A165b in terms of proliferation and matrix expression. Increased VEGF-A165b was detected in plasma of progressing patients with IPF. In a mouse model of pulmonary fibrosis, ATII-specific deficiency of VEGF-A or constitutive overexpression of VEGF-A165b inhibited the development of pulmonary fibrosis, as did treatment with intraperitoneal delivery of VEGF-A165b to wild-type mice. CONCLUSIONS: These results indicate that changes in the bioavailability of VEGF-A sourced from ATII cells, namely the ratio of VEGF-Axxxa to VEGF-Axxxb, are critical in development of pulmonary fibrosis and may be a paradigm for the regulation of tissue repair.


Subject(s)
Gene Expression/genetics , Pulmonary Fibrosis/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Disease Models, Animal , Humans , Lung/physiopathology , Mice , Mice, Inbred C57BL , Protein Isoforms , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/physiopathology , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...