Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 3(6): 570-579, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28691068

ABSTRACT

Defining specific pathways for efficient heat transfer from protein-solvent interfaces to their active sites represents one of the compelling and timely challenges in our quest for a physical description of the origins of enzyme catalysis. Enzymatic hydrogen tunneling reactions constitute excellent systems in which to validate experimental approaches to this important question, given the inherent temperature independence of quantum mechanical wave function overlap. Herein, we present the application of hydrogen-deuterium exchange coupled to mass spectrometry toward the spatial resolution of protein motions that can be related to an enzyme's catalytic parameters. Employing the proton-coupled electron transfer reaction of soybean lipoxygenase as proof of principle, we first corroborate the impact of active site mutations on increased local flexibility and, second, uncover a solvent-exposed loop, 15-34 Å from the reactive ferric center whose temperature-dependent motions are demonstrated to mirror the enthalpic barrier for catalytic C-H bond cleavage. A network that connects this surface loop to the active site is structurally identified and supported by changes in kinetic parameters that result from site-specific mutations.

2.
J Am Chem Soc ; 136(23): 8157-60, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24884374

ABSTRACT

The enzyme soybean lipoxygenase (SLO) has served as a prototype for hydrogen-tunneling reactions, as a result of its unusual kinetic isotope effects (KIEs) and their temperature dependencies. Using a synergy of kinetic, structural, and theoretical studies, we show how the interplay between donor-acceptor distance and active-site flexibility leads to catalytic behavior previously predicted by quantum tunneling theory. Modification of the size of two hydrophobic residues by site-specific mutagenesis in SLO reduces the reaction rate 10(4)-fold and is accompanied by an enormous and unprecedented room-temperature KIE. Fitting of the kinetic data to a non-adiabatic model implicates an expansion of the active site that cannot be compensated by donor-acceptor distance sampling. A 1.7 Å resolution X-ray structure of the double mutant further indicates an unaltered backbone conformation, almost identical side-chain conformations, and a significantly enlarged active-site cavity. These findings show the compelling property of room-temperature hydrogen tunneling within a biological context and demonstrate the very high sensitivity of such tunneling to barrier width.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Lipoxygenase/chemistry , Lipoxygenase/metabolism , Binding Sites , Catalysis , Computer Simulation , Electron Transport , Enzyme Activation , Isotopes/chemistry , Kinetics , Linoleic Acids/chemistry , Lipoxygenase/genetics , Models, Molecular , Mutation , Protein Conformation , Quantum Theory , Glycine max/enzymology , Substrate Specificity , Temperature
3.
Protein Eng Des Sel ; 25(5): 243-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22447804

ABSTRACT

The prion diseases are a class of neurodegenerative diseases caused by the misfolding and aggregation of the prion protein (PrP(C)) into toxic and infectious oligomers (PrP(Sc)). These oligomers are critical to understanding and combating these diseases. Differences in the sequence of PrP affect disease susceptibility, likely by shifting the tolerance of the protein for adaptation to PrP(Sc) conformations and/or the recognition event between PrP(Sc) and PrP(C) prior to conversion of the PrP(C). We selected two sets of PrP(Sc)-resistant mutant sequences for solvated atomistic molecular dynamics simulation to investigate the structural basis of resistance. The first group involved mutation in the X-loop (residues 164-171) resulting from selective breeding of sheep. The second group included eight mutants in mice identified by random mutagenesis targeting helix C followed by screening in cell cultures. Multiple simulations were performed of 14 different mutant and control constructs under different pH conditions for a total of 3.6 µs of simulation time. The X-loop formed a stable turn at neutral pH in wild-type PrP from both species. PrP(Sc)-resistant mutations disrupted this turn even though only one of the mutants is in the X-loop. The X-loop is compact and buried in our previously described spiral models of PrP(Sc)-like oligomers. On the basis of the findings presented here and in the context of the spiral oligomer model, we propose that expansion of the X-loop disrupts protofibril packing, providing a structural basis for resistance.


Subject(s)
PrPSc Proteins/chemistry , Scrapie/genetics , Animals , Hydrogen-Ion Concentration , Mice , Models, Molecular , Molecular Dynamics Simulation , PrPSc Proteins/genetics , Protein Conformation , Protein Structure, Secondary , Sheep/genetics , Sheep/immunology
4.
Protein Sci ; 20(2): 341-52, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21280126

ABSTRACT

We have recently completed systematic molecular dynamics simulations of 807 different proteins representing 95% of the known autonomous protein folds in an effort we refer to as Dynameomics. Here we focus on the analysis of side chain conformations and dynamics to create a dynamic rotamer library. Overall this library is derived from 31,000 occurrences of each of 86,217 different residues, or 2.7 × 10(9) rotamers. This dynamic library has 74% overlap of rotamer distributions with rotamer libraries derived from static high-resolution crystal structures. Seventy-five percent of the residues had an assignable primary conformation, and 68% of the residues had at least one significant alternate conformation. The average correlation time for switching between rotamers ranged from 22 ps for Met to over 8 ns for Cys; this time decreased 20-fold on the surface of the protein and modestly for dihedral angles further from the main chain. Side chain S(2) axis order parameters were calculated and they correlated well with those derived from NMR relaxation experiments (R = 0.9). Relationships relating the S(2) axis order parameters to rotamer occupancy were derived. Overall the Dynameomics rotamer library offers a comprehensive depiction of side chain rotamer preferences and dynamics in solution, and more realistic distributions for dynamic proteins in solution at ambient temperature than libraries derived from crystal structures, in particular charged surface residues are better represented. Details of the rotamer library are presented here and the library itself can be downloaded at http://www.dynameomics.org.


Subject(s)
Amino Acids/chemistry , Molecular Dynamics Simulation , Protein Folding , Proteins/chemistry , Water/chemistry , Amino Acid Sequence , Protein Structure, Tertiary
5.
Structure ; 18(4): 423-35, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20399180

ABSTRACT

The dynamic behavior of proteins is important for an understanding of their function and folding. We have performed molecular dynamics simulations of the native state and unfolding pathways of over 2000 protein/peptide systems (approximately 11,000 independent simulations) representing the majority of folds in globular proteins. These data are stored and organized using an innovative database approach, which can be mined to obtain both general and specific information about the dynamics and folding/unfolding of proteins, relevant subsets thereof, and individual proteins. Here we describe the project in general terms and the type of information contained in the database. Then we provide examples of mining the database for information relevant to protein folding, structure building, the effect of single-nucleotide polymorphisms, and drug design. The native state simulation data and corresponding analyses for the 100 most populated metafolds, together with related resources, are publicly accessible through http://www.dynameomics.org.


Subject(s)
Proteins/chemistry , Algorithms , Animals , Computational Biology/methods , Databases, Protein , Humans , Models, Molecular , Molecular Conformation , Polymorphism, Single Nucleotide , Protein Denaturation , Protein Folding , Proteomics/methods
6.
Genome Biol ; 7(1): R6, 2006.
Article in English | MEDLINE | ID: mdl-16507139

ABSTRACT

We have developed spotted cell microarrays for measuring cellular phenotypes on a large scale. Collections of cells are printed, stained for subcellular features, then imaged via automated, high-throughput microscopy, allowing systematic phenotypic characterization. We used this technology to identify genes involved in the response of yeast to mating pheromone. Besides morphology assays, cell microarrays should be valuable for high-throughput in situ hybridization and immunoassays, enabling new classes of genetic assays based on cell imaging.


Subject(s)
Gene Expression Profiling , Phenotype , Pheromones/genetics , Receptors, Mating Factor/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Genes, Fungal/genetics , Genome, Fungal , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...