Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 620(7973): 402-408, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532929

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Squamous Cell , Epithelial-Mesenchymal Transition , Netrin-1 , Skin Neoplasms , Animals , Humans , Mice , A549 Cells , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Netrin Receptors/antagonists & inhibitors , Netrin Receptors/deficiency , Netrin Receptors/genetics , Netrin-1/antagonists & inhibitors , Netrin-1/deficiency , Netrin-1/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Disease Models, Animal , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Neoplasm Metastasis/drug therapy , Single-Cell Gene Expression Analysis , RNA-Seq , Epithelial Cell Adhesion Molecule/metabolism , Xenograft Model Antitumor Assays , Transforming Growth Factor beta1/pharmacology
2.
Nature ; 589(7842): 448-455, 2021 01.
Article in English | MEDLINE | ID: mdl-33328637

ABSTRACT

FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1-5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2-CD44-SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state.


Subject(s)
Cadherins/deficiency , Epithelial-Mesenchymal Transition/genetics , Gene Deletion , Neoplasm Metastasis/genetics , Neoplasms/genetics , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Disease Progression , Enhancer of Zeste Homolog 2 Protein/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mesoderm/metabolism , Mesoderm/pathology , Mice , Neoplasm Metastasis/drug therapy , Neoplasms/drug therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Phosphoproteins/analysis , Phosphoproteins/metabolism , Proteomics , SOXB1 Transcription Factors/metabolism , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription Factors/metabolism , YAP-Signaling Proteins , Zinc Finger E-box-Binding Homeobox 1/metabolism , src-Family Kinases/metabolism
3.
J Cell Sci ; 131(16)2018 08 16.
Article in English | MEDLINE | ID: mdl-30012834

ABSTRACT

Metastasis of breast cancer cells to distant organs is responsible for ∼50% of breast cancer-related deaths in women worldwide. SHIP2 (also known as INPPL1) is a phosphoinositide 5-phosphatase for phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]. Here we show, through depletion of SHIP2 in triple negative MDA-MB-231 cells and the use of SHIP2 inhibitors, that cell migration appears to be positively controlled by SHIP2. The effect of SHIP2 on migration, as observed in MDA-MB-231 cells, appears to be mediated by PI(3,4)P2. Adhesion on fibronectin is always increased in SHIP2-depleted cells. Apoptosis measured in MDA-MB-231 cells is also increased in SHIP2-depleted cells as compared to control cells. In xenograft mice, SHIP2-depleted MDA-MB-231 cells form significantly smaller tumors than those formed by control cells and less metastasis is detected in lung sections. Our data reveal a general role for SHIP2 in the control of cell migration in breast cancer cells and a second messenger role for PI(3,4)P2 in the migration mechanism. In MDA-MB-231 cells, SHIP2 has a function in apoptosis in cells incubated in vitro and in mouse tumor-derived cells, which could account for its role on tumor growth determined in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Movement/drug effects , Enzyme Inhibitors/pharmacology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors , Animals , Cell Movement/genetics , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Nature ; 556(7702): 463-468, 2018 04.
Article in English | MEDLINE | ID: mdl-29670281

ABSTRACT

In cancer, the epithelial-to-mesenchymal transition (EMT) is associated with tumour stemness, metastasis and resistance to therapy. It has recently been proposed that, rather than being a binary process, EMT occurs through distinct intermediate states. However, there is no direct in vivo evidence for this idea. Here we screen a large panel of cell surface markers in skin and mammary primary tumours, and identify the existence of multiple tumour subpopulations associated with different EMT stages: from epithelial to completely mesenchymal states, passing through intermediate hybrid states. Although all EMT subpopulations presented similar tumour-propagating cell capacity, they displayed differences in cellular plasticity, invasiveness and metastatic potential. Their transcriptional and epigenetic landscapes identify the underlying gene regulatory networks, transcription factors and signalling pathways that control these different EMT transition states. Finally, these tumour subpopulations are localized in different niches that differentially regulate EMT transition states.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms/pathology , Animals , Chromatin/genetics , Epigenesis, Genetic , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mesoderm/metabolism , Mesoderm/pathology , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/genetics , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...