Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 42(36): 12861-4, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-23903289

ABSTRACT

Bulky and electron-rich N-phosphinomethyl-substituted N-heterocyclic carbene transition metal complexes have been prepared in a short and efficient protocol. The modular synthesis allows one to convert borane-protected phosphino-functionalized imidazolium salts into their corresponding metal chelate complexes in a one-pot procedure.

2.
J Phys Chem A ; 117(7): 1449-65, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23330819

ABSTRACT

Steady-state and ultrafast transient absorption spectra were obtained for a series of conformationally constrained, isomerically pure polyenes with 5-23 conjugated double bonds (N). These data and fluorescence spectra of the shorter polyenes reveal the N dependence of the energies of six (1)B(u)(+) and two (1)A(g)(-) excited states. The (1)B(u)(+) states converge to a common infinite polyene limit of 15,900 ± 100 cm(-1). The two excited (1)A(g)(-) states, however, exhibit a large (~9000 cm(-1)) energy difference in the infinite polyene limit, in contrast to the common value previously predicted by theory. EOM-CCSD ab initio and MNDO-PSDCI semiempirical MO theories account for the experimental transition energies and intensities. The complex, multistep dynamics of the 1(1)B(u)(+) → 2(1)A(g)(-) → 1(1)A(g)(-) excited state decay pathways as a function of N are compared with kinetic data from several natural and synthetic carotenoids. Distinctive transient absorption signals in the visible region, previously identified with S* states in carotenoids, also are observed for the longer polyenes. Analysis of the lifetimes of the 2(1)A(g)(-) states, using the energy gap law for nonradiative decay, reveals remarkable similarities in the N dependence of the 2(1)A(g)(-) decay kinetics of the carotenoid and polyene systems. These findings are important for understanding the mechanisms by which carotenoids carry out their roles as light-harvesting molecules and photoprotective agents in biological systems.


Subject(s)
Electrons , Polyenes/chemistry , Carotenoids/chemistry , Models, Molecular
3.
J Am Chem Soc ; 131(37): 13441-52, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19754190

ABSTRACT

Linear oligoenes of 1,6-heptadiynes (derived from dialkyl dipropargylmalonates) with a single basic structure and up to 23 conjugated double bonds were synthesized through Wittig-like reactions between bimetallic Mo-alkylidene compounds and aldehyde-capped oligoenes. The relatively rigid and isomerically pure oligoenes have structures with alternating cis,trans conjugated double bonds in which the cis double bond is part of a cyclopentene ring. Molecular weights have been confirmed through MALDI-MS measurements of samples purified by HPLC. Optical spectra of the purified samples show significant vibronic resolution, even in room temperature samples, and are remarkably similar to those of simple polyenes and carotenoids. Therefore, a systematic investigation of the dependence of the allowed electronic transition energies (electronic origins) on conjugation lengths has become possible. Studies of seven allowed transitions for molecules with 5-23 double bonds (= N) indicate asymptotic convergence (with approximately a 1/N dependence) to a common long polyene limit at approximately 16,000 cm(-1). The convergence of these electronic transitions agrees with theoretical treatments of polyene excited-state energies and is consistent with the absorption spectra of analogous diethyl dipropargylmalonate polymers (1/N approximately 0).

4.
J Am Chem Soc ; 129(21): 6847-58, 2007 May 30.
Article in English | MEDLINE | ID: mdl-17474744

ABSTRACT

Asymmetric cross-coupling of aryl iodides (ArI) with secondary arylphosphines (PHMe(Ar'), Ar' = (2,4,6)-R3C6H2; R = i-Pr (Is), Me (Mes), Ph (Phes)) in the presence of the base NaOSiMe3 and a chiral Pd catalyst precursor, such as Pd((R,R)-Me-Duphos)(trans-stilbene), gave the tertiary phosphines PMe(Ar')(Ar) in enantioenriched form. Sterically demanding secondary phosphine substituents (Ar') and aryl iodides with electron-donating para substituents resulted in the highest enantiomeric excess, up to 88%. Phosphination of ortho-substituted aryl iodides required a Pd(Et-FerroTANE) catalyst but gave low enantioselectivity. Observations during catalysis and stoichiometric studies of the individual steps suggested a mechanism for the cross-coupling of PhI and PHMe(Is) (1) initiated by oxidative addition to Pd(0) yielding Pd((R,R)-Me-Duphos)(Ph)(I) (3). Reversible displacement of iodide by PHMe(Is) gave the cation [Pd((R,R)-Me-Duphos)(Ph)(PHMe(Is))][I] (4), which was isolated as the triflate salt and crystallographically characterized. Deprotonation of 4-OTf with NaOSiMe3 gave the phosphido complex Pd((R,R)-Me-Duphos)(Ph)(PMeIs) (5); an equilibrium between its diastereomers was observed by low-temperature NMR spectroscopy. Reductive elimination of 5 yielded different products depending on the conditions. In the absence of a trap, the unstable three-coordinate phosphine complex Pd((R,R)-Me-Duphos)(PMeIs(Ph)) (6) was formed. Decomposition of 5 in the presence of PhI gave PMeIs(Ph) (2) and regenerated 3, while trapping with phosphine 1 during catalysis gave Pd((R,R)-Me-Duphos)(PHMe(Is))2 (7), which reacted with PhI to give 3. Deprotonation of 1:1 or 1.4:1 mixtures of cations 4-OTf gave the same 6:1 ratio of enantiomers of PMeIs(Ph) (2), suggesting that the rate of P inversion in 5 was greater than or equal to the rate of reductive elimination. Kinetic studies of the first-order reductive elimination of 5 were consistent with a Curtin-Hammett-Winstein-Holness (CHWH) scheme, in which pyramidal inversion at the phosphido ligand was much faster than P-C bond formation. The absolute configuration of the phosphine (SP)-PMeIs(p-MeOC6H4) was determined crystallographically; NMR studies and comparison to the stable complex 5-Pt were consistent with an RP-phosphido ligand in the major diastereomer of the intermediate Pd((R,R)-Me-Duphos)(Ph)(PMeIs) (5). Therefore, the favored enantiomer of phosphine 2 appeared to be formed from the major diastereomer of phosphido intermediate 5, although the minor intermediate diastereomer underwent P-C bond formation about three times more rapidly. The effects of the diphosphine ligand, the phosphido substituents, and the aryl group on the ratio of diastereomers of the phosphido intermediates Pd(diphos*)(Ar)(PMeAr'), their rates of reductive elimination, and the formation of three-coordinate complexes were probed by low-temperature 31P NMR spectroscopy; the results were also consistent with the CHWH scheme.

5.
J Am Chem Soc ; 128(9): 2788-9, 2006 Mar 08.
Article in English | MEDLINE | ID: mdl-16506743

ABSTRACT

The chiral Pt catalyst precursor Pt((R,R)-Me-Duphos)(Ph)(Cl) mediated alkylation of racemic secondary phosphines PHR(R') with benzyl halides in the presence of base to give enantioenriched tertiary phosphines PR(R')(CH2Ar). Similar reactions of bis(secondary) phosphines yielded chiral diphosphines in up to 93% ee and with good rac/meso diastereoselection.

SELECTION OF CITATIONS
SEARCH DETAIL
...