Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 274(30): 20949-52, 1999 Jul 23.
Article in English | MEDLINE | ID: mdl-10409641

ABSTRACT

Glycogen synthase is an excellent in vitro substrate for protein phosphatase-1 (PP1), which is potently inhibited by the phosphorylated forms of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, M(r) = 32,000) and Inhibitor-1. To test the hypothesis that the activation of glycogen synthase by insulin is due to a decrease in the inhibition of PP1 by the phosphatase inhibitors, we have investigated the effects of insulin on glycogen synthesis in skeletal muscles from wild-type mice and mice lacking Inhibitor-1 and DARPP-32 as a result of targeted disruption of the genes encoding the two proteins. Insulin increased glycogen synthase activity and the synthesis of glycogen to the same extent in wild-type and knockout mice, indicating that neither Inhibitor-1 nor DARPP-32 is required for the full stimulatory effects of insulin on glycogen synthase and glycogen synthesis in skeletal muscle.


Subject(s)
Glycogen Synthase/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/metabolism , Phosphoproteins , Proteins/metabolism , Animals , Dopamine and cAMP-Regulated Phosphoprotein 32 , Enzyme Activation/drug effects , Enzyme Inhibitors/metabolism , Mice , Mice, Inbred C57BL
2.
Endocrinology ; 138(7): 2979-88, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9202243

ABSTRACT

We investigated cellular proliferation, the transforming activity, and activation of known signal transduction pathways in NIH-3T3 cells stably expressing insulin-like growth factor-I receptors (IGF-IRs) with amino acid substitutions in the carboxy(C)-terminal domain. The mutant receptors contained substitutions of both tyrosines 1250 and 1251 with phenylalanine and histidine (amino acids present in the analogous positions in the insulin receptor), as well as phenylalanine 1310 replaced by tyrosine (IsY clones) to resemble the placement of tyrosine residues in the C-terminal domain of the insulin receptor. As a control for the IsY clones, a second mutant receptor was expressed with a substitution of phenylalanine 1310 with tyrosine only (DBY clones). Clones expressing IGF-IRs with the IsY substitutions had a significantly slower rate of growth compared with cells expressing an equivalent number of wild-type IGF-IRs (NWT). In contrast, the DBY clones showed relatively normal growth rates. Cells with wild-type IGF-IR demonstrated a transformed phenotype in soft agar assays. The IsY clones lost the transforming ability of the wild type IGF-IR, whereas DBY clones formed colonies. IGF-I-stimulated autophosphorylation of the IGF-IR and tyrosine phosphorylation of IRS-1 and SHC, known substrates in the IGF-IR signal transduction pathway, were studied. Mutated IGF-IRs (IsY and DBY) did not alter the IGF-I-induced tyrosine phosphorylation of these proteins. Furthermore, the mutated IGF-IRs did not alter Grb2 association with phosphorylated IRS-1 and SHC. IGF-I stimulation of Crk-II phosphorylation, a novel substrate of the IGF-IR, was similar in cells expressing mutated and wild-type IGF-IRs. IGF-I-induced activation of phosphatidylinositol (PI) 3'-kinase was equivalent in cells expressing either mutant or wild-type IGF-IRs. These data suggest that the IGF-IR mediates, at least in part, cellular proliferation and increased transforming ability through its C-terminal domain. The exact postreceptor signaling pathway(s) involved have yet to be fully elucidated.


Subject(s)
Cell Transformation, Neoplastic , Mitosis , Proto-Oncogene Proteins , Receptor, IGF Type 1/metabolism , Tyrosine/metabolism , 3T3 Cells , Animals , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Division , Clone Cells/metabolism , Histidine/metabolism , Humans , Insulin Receptor Substrate Proteins , Mice , Phenylalanine/metabolism , Phosphatidylinositol 3-Kinases , Phosphoproteins/metabolism , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-crk , Structure-Activity Relationship , src Homology Domains
3.
Endocrinology ; 138(6): 2552-8, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9165048

ABSTRACT

Insulin-like growth factor-I (IGF-I) and insulin are known to activate a signaling cascade involving ras --> kappa raf-1 --> mitogen-activated protein (MAP) kinase kinase (MEK) --> p42/p44 MAP kinase (Erk-1 and -2). Recent reports suggest that activation of this ras/MAP kinase pathway is involved in mitogenesis and c-fos transcription but is not required for insulin action on metabolic processes such as glycogen synthesis, lipogenesis, and GLUT-4-mediated glucose transport. Previously we and others have demonstrated that substitution of both tyrosines at positions 1250 and 1251 in the carboxy-terminal region of the human IGF-I receptor has relatively small effects on receptor and endogenous substrate phosphorylation but completely abrogated the ability of these cells to form tumors in nude mice or proliferate in response to IGF-I in culture. Replacement of the tyrosine at position 1316 also did not affect the kinase activity of the receptor with respect to autophosphorylation or phosphorylation of endogenous substrates but did reduce the ability of the receptor to mediate mitogenic or tumorigenic signals. To further characterize the role of these tyrosines in IGF-I receptor function, we have used three distinct approaches to examine the ras/MAP kinase pathway in IGF-I-induced mitogenesis and tumorigenesis in NIH-3T3 cells overexpressing wild-type and mutated IGF-I receptors: 1) tyrosine phosphorylation of the MAP kinases Erk-1 and -2; 2), mobility shifts indicative of MAP kinase phosphorylation; and 3) in vitro MAP kinase activation. We have also examined IGF-I-induced phosphatidylinositol (PI) 3-kinase activation in the same cell lines. By each method we show that the IGF-I-induced MAP kinase phosphorylation/activation and PI 3-kinase activation, are not different between cells overexpressing wild-type IGF-I receptors and cells carrying IGF-I receptors having tyrosine motifs replaced at positions 1250 and 1251. We conclude that mitogenic and tumorigenic signals involving tyrosine residues in the C-terminal domain of the IGF-I-receptor include pathways other than the MAP kinase and PI 3-kinase pathways.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Transformation, Neoplastic , Insulin-Like Growth Factor I/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Receptor, IGF Type 1/physiology , 3T3 Cells , Animals , Cell Division/drug effects , Enzyme Activation , Humans , Kinetics , Mice , Mice, Nude , Neoplasm Transplantation , Phosphatidylinositol 3-Kinases , Receptor, IGF Type 1/biosynthesis , Recombinant Proteins/biosynthesis , Signal Transduction , Transfection
4.
Article in English | MEDLINE | ID: mdl-3699009

ABSTRACT

This study was designed to examine the interrelationships between performance in endurance running events from 10 to 90 km, training volume 3-5 weeks prior to competition, and the fractional utilization of maximal aerobic capacity (%VO2max) during each of the events. Thirty male subjects underwent horizontal treadmill testing to determine their VO2max, and steady-state VO2 at specific speeds to allow for calculation of %VO2max sustained during competition. Runners were divided into groups of ten according to their weekly training distance (group A trained less than 60 km X week-1, group B 60 to 100 km X week-1, and group C more than 100 km X week-1). Runners training more than 100 km X week-1 had significantly faster running times (average 19.2%) in all events than did those training less than 100 km X week-1. VO2max or %VO2max sustained during competition was not different between groups. The faster running speed of the more trained runners, running at the same %VO2max during competition, was due to their superior running economy (19.9%). Thus all of the group differences in running performance could be explained on the basis of their differences in running economy. These findings suggest either that the main effect of training more than 100 km X week-1 may be to increase running economy, or that runners who train more than 100 km X week-1 may have inherited superior running economy.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Oxygen Consumption , Physical Endurance , Running , Adult , Aerobiosis , Humans , Male , Mathematics , Middle Aged , Total Lung Capacity
SELECTION OF CITATIONS
SEARCH DETAIL
...