Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38730589

ABSTRACT

Brain tumors are a heterogeneous group of brain neoplasms that are highly prevalent in individuals of all ages worldwide. Within this pathological framework, the most prevalent and aggressive type of primary brain tumor is glioblastoma (GB), a subtype of glioma that falls within the IV-grade astrocytoma group. The death rate for patients with GB remains high, occurring within a few months after diagnosis, even with the gold-standard therapies now available, such as surgery, radiation, or a pharmaceutical approach with Temozolomide. For this reason, it is crucial to continue looking for cutting-edge therapeutic options to raise patients' survival chances. Pentraxin 3 (PTX3) is a multifunctional protein that has a variety of regulatory roles in inflammatory processes related to extracellular matrix (ECM). An increase in PTX3 blood levels is considered a trustworthy factor associated with the beginning of inflammation. Moreover, scientific evidence suggested that PTX3 is a sensitive and earlier inflammation-related marker compared to the short pentraxin C-reactive protein (CRP). In several tumoral subtypes, via regulating complement-dependent and macrophage-associated tumor-promoting inflammation, it has been demonstrated that PTX3 may function as a promoter of cancer metastasis, invasion, and stemness. Our review aims to deeply evaluate the function of PTX3 in the pathological context of GB, considering its pivotal biological activities and its possible role as a molecular target for future therapies.

2.
Diseases ; 12(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38667532

ABSTRACT

Since the inception of the SARS-CoV-2 pandemic, healthcare systems around the world observed an increased rate of Acute Limb Ischemia (ALI) in patients with a COVID-19 infection. Despite several pieces of evidence suggesting that COVID-19 infection may also worsen the prognosis associated with ALI, only a small number of published studies include a direct comparison regarding the outcomes of both COVID-19 and non-COVID-19 ALI patients. Based on the above, a systematic review and a meta-analysis of the literature were conducted, evaluating differences in the incidence of two major outcomes (amputation and mortality rate) between patients concurrently affected by COVID-19 and negative ALI subjects. PubMed (MEDLINE), Web of Science, and Embase (OVID) databases were scrutinized from January 2020 up to 31 December 2023, and 7906 total articles were recovered. In total, 11 studies (n: 15,803 subjects) were included in the systematic review, and 10 of them (15,305 patients) were also included in the meta-analysis. Across all the studies, COVID-19-positive ALI patients experienced worse outcomes (mortality rates ranging from 6.7% to 47.2%; amputation rates ranging from 7.0% to 39.1%) compared to non-infected ALI patients (mortality rates ranging from 3.1% to 16.7%; amputation rates ranging from 2.7% to 18%). Similarly, our meta-analysis shows that both the amputation rate (OR: 2.31; 95% CI: 1.68-3.17; p < 0.00001) and mortality (OR: 3.64; 95% CI: 3.02-4.39; p < 0.00001) is significantly higher in COVID-19 ALI patients compared to ALI patients.

4.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339047

ABSTRACT

Probiotic therapy needs consideration as an alternative strategy to prevent and possibly treat corneal infection. This study aimed to assess the preventive effect of Lactobacillus reuteri and Bifidobacterium longum subsp. infantis on reducing the infection of human corneal epithelial (HCE) cells caused by Pseudomonas aeruginosa. The probiotics' preventive effect against infection was evaluated in cell monolayers pretreated with each probiotic 1 h and 24 h prior to P. aeruginosa challenge followed by 1 h and 24 h of growth in combination. Cell adhesion, cytotoxicity, anti-inflammatory, and antinitrosative activities were evaluated. L. reuteri and B. longum adhered to HCE cells, preserved occludin tight junctions' integrity, and increased mucin production on a SkinEthicTM HCE model. Pretreatment with L. reuteri or B. longum significantly protected HCE cells from infection at 24 h, increasing cell viability at 110% (110.51 ± 5.15; p ≤ 0.05) and 137% (137.55 ± 11.97; p ≤ 0.05), respectively. Each probiotic showed anti-inflammatory and antinitrosative activities, reducing TNF-α level (p ≤ 0.001) and NOx amount (p ≤ 0.001) and reestablishing IL-10 level (p ≤ 0.001). In conclusion, this study demonstrated that L. reuteri and B. longum exert protective effects in the context of corneal infection caused by P. aeruginosa by restoring cell viability and modulating inflammatory cytokine release.


Subject(s)
Dieldrin/analogs & derivatives , Keratitis , Limosilactobacillus reuteri , Probiotics , Pseudomonas Infections , Humans , Pseudomonas Infections/prevention & control , Pseudomonas Infections/metabolism , Epithelial Cells/metabolism , Probiotics/pharmacology , Probiotics/metabolism , Anti-Inflammatory Agents/metabolism
5.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38004397

ABSTRACT

Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.

6.
Oncoimmunology ; 12(1): 2237354, 2023.
Article in English | MEDLINE | ID: mdl-37492227

ABSTRACT

Formyl peptide receptor-1 (FPR1) is a pattern recognition receptor that is mostly expressed by myeloid cells. In patients with colorectal cancer (CRC), a loss-of-function polymorphism (rs867228) in the gene coding for FPR1 has been associated with reduced responses to chemotherapy or chemoradiotherapy. Moreover, rs867228 is associated with accelerated esophageal and colorectal carcinogenesis. Here, we show that dendritic cells from Fpr1-/- mice exhibit reduced migration in response to chemotherapy-treated CRC cells. Moreover, Fpr1-/- mice are particularly susceptible to chronic ulcerative colitis and colorectal oncogenesis induced by the mutagen azoxymethane followed by oral dextran sodium sulfate, a detergent that induces colitis. These experiments were performed after initial co-housing of Fpr1-/- mice and wild-type controls, precluding major Fpr1-driven differences in the microbiota. Pharmacological inhibition of Fpr1 by cyclosporin H also tended to increase intestinal oncogenesis in mice bearing the ApcMin mutation, and this effect was reversed by the anti-inflammatory drug sulindac. We conclude that defective FPR1 signaling favors intestinal tumorigenesis through the modulation of the innate inflammatory/immune response.


Subject(s)
Colitis , Colorectal Neoplasms , Animals , Mice , Carcinogenesis/genetics , Colitis/chemically induced , Colitis/genetics , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Receptors, Formyl Peptide/genetics , Signal Transduction
7.
Oncoimmunology ; 12(1): 2227510, 2023.
Article in English | MEDLINE | ID: mdl-37389102

ABSTRACT

Toll-like receptor 3 (TLR3) agonists such as polyinosinic:polycytidylic acid (poly(I:C)) have immunostimulatory effects that can be taken advantage of to induce anticancer immune responses in preclinical models. In addition, poly(I:C) has been introduced into clinical trials to demonstrate its efficacy as an adjuvant and to enhance the immunogenicity of locally injected tumors, thus reverting resistance to PD-L1 blockade in melanoma patients. Here, we report the pharmacokinetic, pharmacodynamic, mechanistic and toxicological profile of a novel TLR3 agonist, TL-532, a chemically synthesized double-stranded RNA that is composed by blocks of poly(I:C) and poly(A:U) (polyadenylic - polyuridylic acid). In preclinical models, we show that TL-532 is bioavailable after parenteral injection, has an acceptable toxicological profile, and stimulates the production of multiple chemokines and interleukins that constitute pharmacodynamic markers of its immunostimulatory action. When given at a high dose, TL-532 monotherapy reduced the growth of bladder cancers growing on mice. In addition, in immunodeficient mice lacking formylpeptide receptor-1 (FPR1), TL-532 was able to restore the response of orthotopic subcutaneous fibrosarcoma to immunogenic chemotherapy. Altogether, these findings may encourage further development of TL-532 as an immunotherapeutic anticancer agent.


Subject(s)
Melanoma , Toll-Like Receptor 3 , Animals , Mice , Adjuvants, Immunologic , Melanoma/drug therapy , Poly I-C/pharmacology
8.
J Neuroinflammation ; 20(1): 155, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391829

ABSTRACT

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal neurons, which causes disabling motor disorders. Scientific findings support the role of epigenetics mechanism in the development and progression of many neurodegenerative diseases, including PD. In this field, some studies highlighted an upregulation of Enhancer of zeste homolog 2 (EZH2) in the brains of PD patients, indicating the possible pathogenic role of this methyltransferase in PD. The aim of this study was to evaluate the neuroprotective effects of GSK-343, an EZH2 inhibitor, in an in vivo model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic degeneration. Specifically, nigrostriatal degeneration was induced by MPTP intraperitoneal injection. GSK-343 was administered intraperitoneally daily at doses of 1 mg/kg, 5 mg/kg and 10 mg/kg, mice were killed 7 days after MPTP injection. Our results demonstrated that GSK-343 treatment significantly improved behavioral deficits and reduced the alteration of PD hallmarks. Furthermore, GSK-343 administration significantly attenuated the neuroinflammatory state through the modulation of canonical and non-canonical NF-κB/IκBα pathway as well as the cytokines expression and glia activation, also reducing the apoptosis process. In conclusion, the obtained results provide further evidence that epigenetic mechanisms play a pathogenic role in PD demonstrating that the inhibition of EZH2, mediated by GSK-343, could be considered a valuable pharmacological strategy for PD.


Subject(s)
Neuroprotective Agents , Animals , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Apoptosis , Blindness , Brain , Cytokines
9.
Cancers (Basel) ; 15(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37345134

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a commonly occurring head and neck cancer and it is characterized by a high metastasis grade. The aim of this study was to evaluate for the first time the effect of BAY-117082, a selective NLRP3 inflammasome inhibitor, in an in vivo orthotopic model of OSCC and its role in the invasiveness and metastasis processes in neighbor organs such as lymph node, lung, and spleen tissues. Our results demonstrated that BAY-117082 treatment, at doses of 2.5 mg/kg and 5 mg/kg, was able to significantly reduce the presence of microscopic tumor islands and nuclear pleomorphism in tongue tissues and modulate the NLRP3 inflammasome pathway activation in tongue tissues, as well as in metastatic organs such as lung and spleen. Additionally, BAY-117082 treatment modulated the epithelial-mesenchymal transition (EMT) process in tongue tissue as well as in metastatic organs such as lymph node, lung, and spleen, also reducing the expression of matrix metalloproteinases (MMPs), particularly MMP2 and MMP9, markers of cell invasion and migration. In conclusion, the obtained data demonstrated that BAY-117082 at doses of 2.5 mg/kg and 5 mg/kg were able to reduce the tongue tumor area as well as the degree of metastasis in lymph node, lung, and spleen tissues through the NLRP3 inflammasome pathway inhibition.

10.
Sci Rep ; 13(1): 2849, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36807330

ABSTRACT

Bacterial vaginosis (BV) is a common vaginal dysbiosis characterized by a malodorous discharge and irritation. The imbalance of the vaginal microbiota plays a key role in the development of BV. It has been demonstrated that Gardnerella vaginalis (GV), a facultative anaerobic bacillus, is involved in BV. Due to the rising number of antimicrobial-resistant species, recurrence of BV is becoming more frequent in women; thus, alternative treatments to antibiotics are needed. Natural substances have recently shown a great efficacy for the treatment of vaginal dysbiosis. Thus, this study aimed to investigate the beneficial effect of a product containing pea protein (PP), grape seed extract (GS) and lactic acid (LA) in an in vivo model of Gardnerella vaginalis-induced vaginosis by intravaginal administration of GV suspension (1 × 106 CFU/20 µL saline). Our results demonstrated that the product containing PP, GS and LA significantly reduced GV proliferation. More specifically, it significantly preserved tissue architecture and reduced neutrophil infiltration, inflammatory markers and sialidase activity when used both as a pre- or a post-treatment. Moreover, the product displayed strong bioadhesive properties. Therefore, our data suggested that the product containing PP, GS and LA could be used as alternative preventive or curative treatment for the management of BV.


Subject(s)
Grape Seed Extract , Pea Proteins , Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/microbiology , Dysbiosis , Gardnerella vaginalis , Vagina/microbiology
11.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834534

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by epidermal gene abnormalities, epidermal barrier defects and inflammation. Corticosteroids are considered to be standard treatments, but often come with side effects and lose efficacy with long-term use. Alternative treatments targeting the epidermal barrier defect are needed to manage the disease. Film-forming substances such as xyloglucan, pea protein and Opuntia ficus-indica extract (XPO) have generated interest for their ability to restore skin barrier integrity and may pose an alternative approach to disease management. Thus, the aim of this two-part study was to evaluate the barrier-protective properties of a topical cream containing XPO on the membrane permeability of keratinocytes exposed to inflammatory conditions and compare its efficacy to dexamethasone (DXM) in an in vivo model of psoriasis-like dermatitis. XPO treatment significantly reduced S. aureus adhesion, subsequent skin invasion and restored epithelial barrier function in keratinocytes. Furthermore, the treatment restored the integrity of keratinocytes, reducing tissue damage. In mice with psoriasis-like dermatitis, XPO significantly reduced erythema, inflammatory markers and epidermal thickening with a superior efficacy to dexamethasone. Given the promising results, XPO may represent a novel steroid-sparing therapeutic for epidermal-related diseases such as psoriasis, thanks to its ability to preserve skin barrier function and integrity.


Subject(s)
Dermatitis , Opuntia , Pea Proteins , Psoriasis , Skin Diseases , Mice , Animals , Staphylococcus aureus , Dexamethasone
12.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430394

ABSTRACT

Glioblastoma (GB) is a tumor of the central nervous system characterized by high proliferation and invasiveness. The standard treatment for GB includes radiotherapy and chemotherapy; however, new therapies are needed. Particular attention was given to the role of histone methyltransferase enhancer of zeste-homolog-2 (EZH2) in GB. Recently, several EZH2-inhibitors have been developed, particularly GSK343 is well-known to regulate apoptosis and autophagy processes; however, its abilities to modulate canonical/non-canonical NF-κB/IκBα pathways or an immune response in GB have not yet been investigated. Therefore, this study investigated for the first time the effect of GSK343 on canonical/non-canonical NF-κB/IκBα pathways and the immune response, by an in vitro, in vivo and ex vivo model of GB. In vitro results demonstrated that GSK343 treatments 1, 10 and 25 µM significantly reduced GB cell viability, showing the modulation of canonical/non-canonical NF-κB/IκBα pathway activation. In vivo GSK343 reduced subcutaneous tumor mass, regulating canonical/non-canonical NF-κB/IκBα pathway activation and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Ex vivo results confirmed the anti-proliferative effect of GSK343 and also demonstrated its ability to regulate immune response through CXCL9, CXCL10 and CXCL11 expression in GB. Thus, GSK343 could represent a therapeutic strategy to counteract GB progression, thanks to its ability to modulate canonical/non-canonical NF-κB/IκBα pathways and immune response.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Glioblastoma , Humans , Glioblastoma/drug therapy , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha
13.
Biomed Pharmacother ; 156: 113851, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36252354

ABSTRACT

Migraine is a common neuronal disorder characterized by recurrent episodes of headache associated with a higher prevalence in women than men. Several risk factors have been associated with migraine disease as genetic factors, gender, and age. Although understanding migraine pathophysiology is improved, it has been reported that NOD-like receptor protein 3 (NLRP3) inflammasome pathway overactivation can contribute to migraine progression. Therefore, the aim of this study was to investigate the effect of BAY-117082, an NLRP3 inflammasome inhibitor, in a mouse model of nitroglycerin (NTG)-induced migraine. The in vivo model of migraine was induced by intraperitoneal (i.p) injection of NTG (dose of 10 mg/kg). Mice were treated intraperitoneally with BAY-117082 at doses of 1 mg/kg, 5 mg/kg, and 10 mg/kg, 5 min following NTG injection. After 4 h of NTG injection, the whole brain tissue with the rostral spinal cord were collected and used to perform further analysis. Our results demonstrated that BAY-117082 treatments (5 mg/kg and 10 mg/kg) reduced pain attacks, hyperalgesia and photophobia more in female mice NTG-induced. Moreover, the treatment with BAY-117082 significantly reduced histological damage in the trigeminal nerve nucleus in female mice accordingly to significantly decreased in NLRP3 complex components expression levels such as ASC, IL-1ß, IL-18, caspase-1 and TNF-α levels. Additionally, the treatment with BAY-117082 at both higher doses significantly modulated CREB/Erk/Akt pathways strictly correlated to the expression of neurotrophic factors. Taken together, obtained results confer new insight into the role of the NLRP3 inflammasome pathway in migraine pathogenesis, suggesting that BAY-117082 could be considered a novel strategy therapeutics for migraine treatment despite unconventional drug use.


Subject(s)
Inflammasomes , Migraine Disorders , Animals , Female , Male , Mice , Glycerol , Inflammasomes/metabolism , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins
14.
J Clin Med ; 11(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893393

ABSTRACT

Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) represent gastrointestinal (GI) disorders associated with varied responses to microbial and environmental agents. Natural compounds have been suggested as a valid approach to the management of various GI diseases, particularly the green alga Ulva pertusa, belonging to the Ulvaceae family, which showed powerful biological properties. Here, we aimed to evaluate the effect and the mechanism of Ulva pertusa treatments in a murine model of DNBS-induced colitis. Colitis was induced by DNBS intrarectal installation (4 mg in 100 µL of 50% ethanol), while Ulva pertusa treatments (doses of 10, 50 and 100 mg/kg) were administered orally daily. Ulva pertusa, at the higher doses of 50 and 100 mg/kg, significantly reduced tissue damage DNBS-induced and the consequent inflammatory cascade via NF-κB inhibition. Furthermore, we demonstrated, for the first time, Ulva pertusa action on the SIRT1/Nrf2 axis, enhancing antioxidant response and the modulation of the apoptosis pathway colitis-induced, regulating the expression of p53, Bax, Bcl-2, and Caspases. Taken together, Ulva pertusa could be considered a valid approach for counteracting and blocking the progression of IBDs through modulation of the NF-κB/SIRT1/Nrf2 axis.

15.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563235

ABSTRACT

Migraine is a common brain-disorder that affects 15% of the population. Converging evidence shows that migraine is associated with gastrointestinal disorders. However, the mechanisms underlying the interaction between the gut and brain in patients with migraine are not clear. In this study, we evaluated the role of the short-chain fatty acids (SCFAs) as sodium propionate (SP) and sodium butyrate (SB) on microbiota profile and intestinal permeability in a mouse model of migraine induced by nitroglycerine (NTG). The mice were orally administered SB and SP at the dose of 10, 30 and 100 mg/kg, 5 min after NTG intraperitoneal injections. Behavioral tests were used to evaluate migraine-like pain. Histological and molecular analyses were performed on the intestine. The composition of the intestinal microbiota was extracted from frozen fecal samples and sequenced with an Illumina MiSeq System. Our results demonstrated that the SP and SB treatments attenuated hyperalgesia and pain following NTG injection. Moreover, SP and SB reduced histological damage in the intestine and restored intestinal permeability and the intestinal microbiota profile. These results provide corroborating evidence that SB and SP exert a protective effect on central sensitization induced by NTG through a modulation of intestinal microbiota, suggesting the potential application of SCFAs as novel supportive therapies for intestinal disfunction associated with migraine.


Subject(s)
Gastrointestinal Microbiome , Migraine Disorders , Animals , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Dietary Supplements , Disease Models, Animal , Fatty Acids, Volatile/adverse effects , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Mice , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Nitroglycerin/adverse effects , Pain/drug therapy
16.
Biomedicines ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35453501

ABSTRACT

Psoriasis is an inflammatory and auto-immune skin-disease characterized by uncontrolled keratinocyte proliferation. Its pathogenesis is not still fully understood; however, an aberrant and excessive inflammatory and immune response can contribute to its progression. Recently, more attention has been given to the anti-inflammatory and immunomodulators effects of melatonin in inflammatory diseases. The aim of this paper was to investigate the effect of melatonin on psoriatic phenotype and also in S. aureus infection-associated psoriasis, with an in vitro model using Skinethic Reconstructed Human Epidermis (RHE). An in vitro model was constructed using the RHE, a three-dimensional-model obtained from human primary-keratinocytes. RHE-cells were exposed to a mix of pro-inflammatory cytokines, to induce a psoriatic phenotype; cells were also infected with S. aureus to aggravate psoriasis disease, and then were treated with melatonin at the concentrations of 1 nM, 10 nM, and 50 nM. Our results demonstrated that melatonin at higher concentrations significantly reduced histological damage, compared to the cytokine and S. aureus groups. Additionally, the treatment with melatonin restored tight-junction expression and reduced pro-inflammatory cytokine levels, such as interleukin-1ß and interleukin-12. Our results suggest that melatonin could be considered a promising strategy for psoriasis-like skin inflammation, as well as complications of psoriasis, such as S. aureus infection.

17.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35216464

ABSTRACT

Micro ribonucleic acids (miRNAs) are small endogenous noncoding RNAs molecules that regulate gene expression post-transcriptionally. A single miRNA is able to target hundreds of specific messenger RNA (mRNAs) by binding to the 3'-untranslated regions. miRNAs regulate different biological processes such as cell proliferation, differentiation and apoptosis. Altered miRNA expression is certainly related to the development of the most common human diseases, including tumors. Osteosarcoma (OS), Ewing's Sarcoma (ES), and Chondrosarcoma (CS) are the most common primary bone tumors which affect mainly children and adolescents. A significant dysregulation of miRNA expression, in particular of mir-34, mir-21, mir-106, mir-143, and miR-100, has been revealed in OS, ES and CS. In this context, miRNAs can act as either tumor suppressor genes or oncogenes, contributing to the initiation and progression of bone tumors. The in-depth study of these small molecules can thus help to better understand their biological functions in bone tumors. Therefore, this review aims to examine the potential role of miRNAs in bone tumors, especially OS, ES and CS, and to suggest their possible use as potential therapeutic targets for the treatment of bone tumors and as biomarkers for early diagnosis.


Subject(s)
Bone Neoplasms/metabolism , MicroRNAs/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/physiopathology , Gene Expression Regulation, Neoplastic , Humans
18.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35216383

ABSTRACT

Functional abdominal bloating and distension (FABD) are common and frequent symptoms in patients with pre-existing gastrointestinal (GI) disorders. FABD is characterized by recurrent abdominal fullness and bloating. The pathophysiology of FABD is still unclear. However, the plausible mechanisms involved are small intestinal bacterial overgrowth (SIBO), imbalance of gut microbiota, visceral hypersensitivity, intestinal permeability alteration, and disruption of intestinal barrier function. Thus, the creation of a barrier on the wall of the intestine could represent an alternative therapeutic strategy to prevent FABD. This study aimed to investigate the effect of two natural substances, Xyloglucan (XG) and Pea-protein (PP), known for their mucosal-protective properties, in an in vivo model of Partial restraint-stress (PRS). Our results showed that the pre-treatment with a product containing XG and PP in stressed-rats was able to reduce the number of abdominal contractions and visceral hypersensitivity. Moreover, XG and PP were able to reduce intestinal permeability alteration, restoring tight-junctions (TJs) expression and decreased the lactulose-mannitol ratio, a quantitative marker used to measure intestinal permeability, compared to PRS-group. In conclusion, the data obtained revealed that the product containing XG and PP was able to restore the normal intestinal-barrier function; therefore, it could be considered a therapeutic strategy to manage FABD.


Subject(s)
Gastrointestinal Tract/metabolism , Glucans/metabolism , Intestinal Mucosa/metabolism , Pea Proteins/metabolism , Xylans/metabolism , Animals , Defecation/physiology , Disease Models, Animal , Female , Irritable Bowel Syndrome/metabolism , Permeability , Rats , Rats, Sprague-Dawley , Restraint, Physical/physiology , Tight Junctions/metabolism
19.
Cancers (Basel) ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36612214

ABSTRACT

New therapeutic approaches are needed to improve the outcome of patients with glioblastoma (GBM). Propionate, a short-chain fatty acid (SCFA), has a potent antiproliferative effect on various tumor cell types. Peroxisome proliferator-activated receptor (PPAR) ligands possess anticancer properties. We aimed to investigate the PPAR-γ/SCFAs interaction in in vitro and in vivo models of GBM. The U87 cell line was used in the in vitro study and was treated with sodium propionate (SP). U87 cells were silenced by using PPAR-γ siRNA or Ctr siRNA. In the in vivo study, BALB/c nude mice were inoculated in the right flank with 3 × 106 U-87 cells. SP (doses of 30 and 100 mg/kg) and GW9662 (1 mg/kg) were administered. In vitro exposure of GBM to SP resulted in prominent apoptosis activation while the autophagy pathway was promoted by SP treatments by influencing autophagy-related proteins. Knockdown of PPAR-γ sensitized GBM cells and blocked the SP effect. In vivo, SP was able to decrease tumor growth and to resolve GBM tissue features. SP promoted apoptosis and autophagy pathways and tumor cell proliferation leading to cell cycle arrest through a PPAR-γ-dependent mechanism suggesting that the PPAR-γ/SCFAs axis could be targeted for the management of GBM.

20.
Oncotarget ; 12(25): 2459-2473, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34917264

ABSTRACT

Oral squamous cell-carcinoma (OSCC) is a common cancer which arises from the alveolar ridge, buccal mucosa, and tongue. Among OSCC, the incidence of tongue squamous cell-carcinoma (TSCC) is growing all over the world. Oral carcinogenesis has been linked to genetic mutations, chromosomal aberrations and viral factors. Apoptosis and angiogenesis play a key role in the development of oral cancer. Therefore, it is very important discover new therapeutic strategies to counteract oral cancer progression. This study aimed to investigate the effect of KYP-2047 in an in vitro model of TSCC and in vivo CAL27-xenograft model. Our results demonstrated that KYP-2047 was able to reduce TSCCs cell viability at the concentrations of 50 µM and 100 µM. Additionally, KYP-2047 was able to increase Bax, Bad and caspase-3 expression, whereas Bcl-2 and p53 expression were reduced. Moreover, KYP-2047 significantly reduced vascular-endothelial-growth-factor (VEGF) and endothelial-nitric-oxide-synthase (eNOS) expression. In the vivo xenograft model, KYP-2047 at doses of 1 and 5 mg/kg significantly reduced tumor burden and tumor weight, decreasing also angiogenesis markers VEGF and eNOS. Moreover, KYP-2047 increased Bax and reduced Bcl2 expressions. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract tongue oral-cancer growth, thanks its abilities to modulate angiogenesis and apoptosis pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...