Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 105: 106867, 2024 May.
Article in English | MEDLINE | ID: mdl-38581799

ABSTRACT

In this initial study, the impact of thermosonication as an alternative to the traditional fusion in Brazilian cheese spread (Requeijão Cremoso) manufacture was investigated. The effect of ultrasound (US) power was evaluated considering various aspects such as gross composition, microstructure, texture, rheology, color, fatty acid composition, and volatile compounds. A 13 mm US probe operating at 20 kHz was used. The experiment involved different US power levels (200, 400, and 600 W) at 85 °C for 1 min, and results were compared to the conventional process in the same conditions (85 °C for 1 min, control treatment). The texture became softer as ultrasound power increased from 200 to 600 W, which was attributed to structural changes within the protein and lipid matrix. The color of the cheese spread also underwent noticeable changes for all US treatments, and treatment at 600 W resulted in increased lightness but reduced color intensity. Moreover, the fatty acid composition of the cheese spread showed variations with different US power, with samples treated at 600 W showing lower concentrations of saturated and unsaturated fatty acids, as well as lower atherogenicity and thrombogenicity indexes, indicating a potentially healthier product. Volatile compounds were also influenced by US, with less compounds being identified at higher powers, especially at 600 W. This could indicate possible degradation, which should be evaluated in further studies regarding US treatment effects on consumer perception. Hence, this initial work demonstrated that thermosonication might be interesting in the manufacture of Brazilian cheese spread, since it can be used to manipulate the texture, color and aroma of the product in order to improve its quality parameters.


Subject(s)
Cheese , Cheese/analysis , Sonication/methods , Brazil , Food Handling/methods , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Fatty Acids/chemistry , Color , Temperature
2.
Food Res Int ; 167: 112702, 2023 05.
Article in English | MEDLINE | ID: mdl-37087267

ABSTRACT

Due to the intense competition in the sector, the dairy market maintains a constant search for innovations. Thus, new technologies are incorporated, and new products are constantly launched, increasing the range of consumer options. In this way, the understanding of consumers' motivations, attitudes, and behaviors in the moments of choice, purchase, and consumption are important for the academic public and food industries. This study used the Text Highlighting methodology to assess Brazilian consumers' explicit attitudes towards using high-intensity ultrasound technology in Minas Frescal cheese processing. In the task, consumers were asked to highlight in a text the terms they "liked" or "disliked" about using high-intensity ultrasound in the Minas Frescal cheese processing. A seven-point Likert scale was also used to assess consumers' attitudinal statements. A high engagement of consumers with the Text Highlighting methodology could be observed (43.8-92.3% of text highlighting), which suggests good intuitiveness of the technique. Including information about the benefits of the emerging technology in the product, mainly on sensory and nutritional properties, may increase positive consumer perception, as it promotes the consumers to express their value judgment in the form of "liked". At the same time, the harms of the traditional processing technique prompted consumers to express their value judgment in the "disliked" highlights. It was observed that information should be in a simple and direct language, as technical terminology in the text did not have a positive effect. The categorizing of consumers according to the sentimental score showed that consumers are still reticent to use emerging technologies in Minas Frescal cheese processing. Consumers' attitudinal statements demonstrated that consumers perceive high-intensity ultrasound as a positive idea and safety technology for Minas Frescal cheese processing. Still, they are not willing to pay premium prices. In conclusion, Text Highlighting produced valuable insights that can be used in communication strategies with Minas Frescal cheese consumers.


Subject(s)
Cheese , Consumer Behavior , Brazil
3.
Ultrason Sonochem ; 92: 106260, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36502682

ABSTRACT

Minas frescal cheese is extremely popular in Brazil, with high perishability and acceptability. Among emerging technologies, ultrasound stands out for its satisfactory results regarding microbiological safety and technological and sensory aspects. The combined mild temperature application, called thermosonication, can generate even more promising results. In this study, a high-intensity ultrasound system combined with thermal heating (TS, thermosonication) was applied for the treatment of raw milk to produce Minas Frescal cheese. US energy was delivered to raw milk samples using a probe operating at a 20 kHz of frequency and nominal power of 160, 400, and 640 W. The TS system was compared with conventional pasteurization (HTST, high-temperature short-time pasteurization) at 72 to 75 °C and 15 s. Soft cheeses were prepared with different samples: (a) raw milk (control), b)conventionally pasteurized milk (HTST), and c) TS treat milk in different nominal power (TS160, TS400, and TS640). The produced cheeses were evaluated for microbiological behavior, rheology, color parameters, and bioactive compounds. TS treatment in milk resulted in higher microbial inactivation and stability during storage, improved color parameters (higher lightness (L*), and whiteness index (WI). TS treatment also showed a higher generation of bioactive compounds (higher antioxidant, and inhibitory activities of α-amylase, α-glucosidase, and angiotensin-converting enzymes) than HTST. The impact of TS on rheological properties was similar to HTST, resulting in more brittle and less firm products than the cheese produced with raw milk. The positive effects were more prominent using a nominal power of 400 W (TS400). Therefore, TS proved to be a promising process for processing milk for Minas Frescal cheese production.


Subject(s)
Cheese , Animals , Cheese/analysis , Milk/microbiology , Pasteurization , Brazil , Temperature
4.
Ultrason Sonochem ; 67: 105185, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32474185

ABSTRACT

The aim of this study was to evaluate the effects of non-thermal and thermal high-intensity ultrasound (HIUS) treatment on the microbial and enzymatic inactivation, physicochemical properties, and kinetic stability of the raw milk by applying different energy densities (1, 3, 5, and 7 kJ/mL). Two HIUS treatments were evaluated based on different nominal powers, named HIUS-A and HIUS-B, using 100 W and 475 W, respectively. HIUS-A treatment was non-thermal processing while HIUS-B was a thermal treatment only for the energy densities of 5 and 7 kJ/mL since the final temperature was above 70 °C. The HIUS-B treatment showed to be more efficient. Log reductions up to 3.9 cycles of aerobic mesophilic heterotrophic bacteria (AMHB) were achieved. Significant reductions of the fat globule size, with diameters lower than 1 µm, better color parameters, and kinetic stability during the storage were observed. Also, HIUS-B treatment inactivated the alkaline phosphatase and lactoperoxidase. The HIUS-B treatment at 3 kJ/mL worked below 57 °C being considered a border temperature since it did not cause unwanted physicochemical effects. Furthermore, a microbial inactivation of 1.8 ± 0.1 log cycles of AMHB was observed. A proper inactivation of only the Alkaline phosphatase and a significant reduction of the fat globules sizes, which kept the milk kinetically stable during storage was achieved.


Subject(s)
Milk/chemistry , Sonication , Animals , Cattle , Hot Temperature , Kinetics
5.
Ultrason Sonochem ; 57: 12-21, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31208607

ABSTRACT

High-intensity ultrasound (HIUS) can be used as a mild-preservation technology in dairy products, due to its ability to inactivate pathogenic microorganisms and enzymes. In addition, it can result in physical and chemical alterations in the products and has impact on the probiotic viability and metabolic activity. This review provides an overview of the effects of HIUS on dairy products manufactured with probiotics and prebiotics. Furthermore, it presents perspectives of HIUS application on paraprobiotics and postbiotics products. HIUS has been proven to be a potential technology and its application to fermented dairy products can result in shorter processing time, increased probiotic viability, and products with low lactose content, higher oligosaccharides concentration, less undesirable taste (lower propionic and acetic acids content) and reduced ingredients (no need of prebiotic addition or ß-galactosidase inclusion). In cheeses, HIUS can reduce the ripening time and accelerate proteolysis, resulting in products with better sensory, textural and nutritional (bioactive peptides) characteristics. Furthermore, it can change the prebiotic structure, facilitating the access for the probiotics. The impact of the HIUS is highly dependent on the process parameters (frequency, power, processing time, pulse mode and duration), type of probiotic culture and food composition. Therefore, HIUS process parameters must be precisely quantified and controlled. The HIUS can also be applied to the inactivation of probiotic cultures and development of paraprobiotic products or to the improvement in the production of soluble factors (postbiotics) with health effects. Further researches should be conducted to evaluate the efficiency of this methodology in the cases of paraprobiotic and postbiotic products.


Subject(s)
Dairy Products , Food Technology , Prebiotics , Probiotics , Ultrasonic Waves , Functional Food
SELECTION OF CITATIONS
SEARCH DETAIL
...