Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 35(5): 1742-55, 2006.
Article in English | MEDLINE | ID: mdl-16899745

ABSTRACT

A detailed study of water and nitrogen (N) discharge from a small, representative subwatershed of Rehoboth Bay, Delaware, was conducted to determine total N loads to the bay. The concentrations of ammonium (NH4(+)), nitrate + nitrite (NO3(-) + NO2(-)), and dissolved and particulate organic N were determined in baseflow and storm waters discharging from Bundicks Branch from October 1998 to April 2002. A novel hydrographic separation model that accounts for significant decreases in baseflow during storm events was developed to estimate N loads during unsampled storms. Nitrogen loads based on gauged flows alone (7100-19,100 kg/yr) significantly underestimated those based on land use-land cover (LULC) and estimated N export factors from different classes of LULC (32,000-40,600 kg/yr). However, when ungauged underflow and associated N loads were included in the total loads (25,500-33,800 kg/yr), there was much better agreement with LULC export models. This suggests that in permeable coastal plain sediments, underflow contributes significantly to N fluxes to estuarine receiving waters, particularly in drier years. Based on the similarity in LULC, N loads from the Bundicks Branch subwatershed were used to estimate upland loads to the entire Rehoboth Bay Watershed (259,000-316,000 kg/yr). These N loads from the watershed were much greater than those from direct atmospheric deposition (49,000-64,500 kg/yr) and from a local wastewater treatment plant (9700-13,700 kg/yr). While the watershed was the principal source of N at all times during the year, the relative contributions from the watershed, wastewater, and direct atmospheric deposition varied predictably with season.


Subject(s)
Environmental Monitoring , Models, Theoretical , Nitrogen/analysis , Water Pollutants/analysis , Delaware , Environmental Monitoring/methods , Seasons
3.
Science ; 232(4751): 746-9, 1986 May 09.
Article in English | MEDLINE | ID: mdl-17769570

ABSTRACT

Sulfur species in pore waters of the Great Marsh, Delaware, were analyzed seasonally by polarographic methods. The species determined (and their concentrations in micromoles per liter) included inorganic sulfides (

SELECTION OF CITATIONS
SEARCH DETAIL
...