Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 5(190): 190ra79, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23785035

ABSTRACT

Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)- and ex-US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections.


Subject(s)
Drug Approval , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/drug therapy , Selective Estrogen Receptor Modulators/therapeutic use , United States Food and Drug Administration , Animals , Cathepsins/metabolism , Chlorocebus aethiops , Clomiphene/pharmacology , Clomiphene/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Ebolavirus/drug effects , Endosomes/drug effects , Endosomes/metabolism , Hemorrhagic Fever, Ebola/virology , Hep G2 Cells , Humans , Hydrogen-Ion Concentration/drug effects , Mice , Mice, Inbred C57BL , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Survival Analysis , Toremifene/pharmacology , Toremifene/therapeutic use , United States , Vero Cells , Virion/drug effects , Virus Internalization/drug effects
2.
PLoS One ; 8(4): e60838, 2013.
Article in English | MEDLINE | ID: mdl-23573288

ABSTRACT

Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes.


Subject(s)
Ebolavirus/physiology , Filoviridae Infections/metabolism , Mannose-Binding Lectin/metabolism , Receptors, Mitogen/metabolism , Virus Internalization , Animals , Chlorocebus aethiops , Complement System Proteins/metabolism , HEK293 Cells , Host-Pathogen Interactions , Humans , Membrane Glycoproteins/metabolism , Pinocytosis , Vero Cells , Viral Envelope Proteins/metabolism
3.
PLoS One ; 8(2): e56265, 2013.
Article in English | MEDLINE | ID: mdl-23441171

ABSTRACT

Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC(50) 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann-Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.


Subject(s)
Carrier Proteins/metabolism , Cations , Ebolavirus/drug effects , Ebolavirus/physiology , Membrane Glycoproteins/metabolism , Surface-Active Agents/pharmacology , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biosynthetic Pathways/drug effects , Cations/chemistry , Cell Line , Hemorrhagic Fever, Ebola , Humans , Intracellular Signaling Peptides and Proteins , Niemann-Pick C1 Protein , Phenotype , Steroids/biosynthesis , Surface-Active Agents/chemistry
4.
Proc Natl Acad Sci U S A ; 109(44): 18030-5, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23071322

ABSTRACT

Filovirus infections can cause a severe and often fatal disease in humans and nonhuman primates, including great apes. Here, three anti-Ebola virus mouse/human chimeric mAbs (c13C6, h-13F6, and c6D8) were produced in Chinese hamster ovary and in whole plant (Nicotiana benthamiana) cells. In pilot experiments testing a mixture of the three mAbs (MB-003), we found that MB-003 produced in both manufacturing systems protected rhesus macaques from lethal challenge when administered 1 h postinfection. In a pivotal follow-up experiment, we found significant protection (P < 0.05) when MB-003 treatment began 24 or 48 h postinfection (four of six survived vs. zero of two controls). In all experiments, surviving animals that received MB-003 experienced little to no viremia and had few, if any, of the clinical symptoms observed in the controls. The results represent successful postexposure in vivo efficacy by a mAb mixture and suggest that this immunoprotectant should be further pursued as a postexposure and potential therapeutic for Ebola virus exposure.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Hemorrhagic Fever, Ebola/prevention & control , Plantibodies/therapeutic use , Animals , Antibodies, Monoclonal/isolation & purification , CHO Cells , Cricetinae , Cricetulus , Macaca mulatta , Plantibodies/isolation & purification
5.
Proc Natl Acad Sci U S A ; 108(51): 20690-4, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22143789

ABSTRACT

No countermeasures currently exist for the prevention or treatment of the severe sequelae of Filovirus (such as Ebola virus; EBOV) infection. To overcome this limitation in our biodefense preparedness, we have designed monoclonal antibodies (mAbs) which could be used in humans as immunoprotectants for EBOV, starting with a murine mAb (13F6) that recognizes the heavily glycosylated mucin-like domain of the virion-attached glycoprotein (GP). Point mutations were introduced into the variable region of the murine mAb to remove predicted human T-cell epitopes, and the variable regions joined to human constant regions to generate a mAb (h-13F6) appropriate for development for human use. We have evaluated the efficacy of three variants of h-13F6 carrying different glycosylation patterns in a lethal mouse EBOV challenge model. The pattern of glycosylation of the various mAbs was found to correlate to level of protection, with aglycosylated h-13F6 providing the least potent efficacy (ED(50) = 33 µg). A version with typical heterogenous mammalian glycoforms (ED(50) = 11 µg) had similar potency to the original murine mAb. However, h-13F6 carrying complex N-glycosylation lacking core fucose exhibited superior potency (ED(50) = 3 µg). Binding studies using Fcγ receptors revealed enhanced binding of nonfucosylated h-13F6 to mouse and human FcγRIII. Together the results indicate the presence of Fc N-glycans enhances the protective efficacy of h-13F6, and that mAbs manufactured with uniform glycosylation and a higher potency glycoform offer promise as biodefense therapeutics.


Subject(s)
Ebolavirus/metabolism , Fucose/immunology , Animals , Antibodies, Monoclonal/chemistry , Antiviral Agents/chemistry , Complement C1q/chemistry , Ebolavirus/immunology , Female , Fucose/chemistry , Glycosylation , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Immune System , Immunization, Passive , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Sequence Data , Surface Plasmon Resonance , Nicotiana
6.
J Infect Dis ; 203(2): 175-9, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21288816

ABSTRACT

Mannose-binding lectin (MBL) targets diverse microorganisms for phagocytosis and complement-mediated lysis by binding specific surface glycans. Although recombinant human MBL (rhMBL) trials have focused on reconstitution therapy, safety studies have identified no barriers to its use at higher levels. Ebola viruses cause fatal hemorrhagic fevers for which no treatment exists and that are feared as potential biothreat agents. We found that mice whose rhMBL serum concentrations were increased ≥7-fold above average human levels survived otherwise fatal Ebola virus infections and became immune to virus rechallenge. Because Ebola glycoproteins potentially model other glycosylated viruses, rhMBL may offer a novel broad-spectrum antiviral approach.


Subject(s)
Ebolavirus/immunology , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/pathology , Immunologic Factors/administration & dosage , Mannose-Binding Lectin/administration & dosage , Animals , Antiviral Agents/administration & dosage , Humans , Mice , Mice, Knockout , Recombinant Proteins/administration & dosage , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...