Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Sci Rep ; 14(1): 6595, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503806

ABSTRACT

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy characterized by a high clinical variability. Therefore, there is a critical need to define parameters that identify high-risk patients for aggressive disease and therapy resistance. B-cell receptor (BCR) signaling is crucial for MCL initiation and progression and is a target for therapeutic intervention. We interrogated BCR signaling proteins (SYK, LCK, BTK, PLCγ2, p38, AKT, NF-κB p65, and STAT5) in 30 primary MCL samples using phospho-specific flow cytometry. Anti-IgM modulation induced heterogeneous BCR signaling responses among samples allowing the identification of two clusters with differential responses. The cluster with higher response was associated with shorter progression free survival (PFS) and overall survival (OS). Moreover, higher constitutive AKT activity was predictive of inferior response to the Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib. Time-to-event analyses showed that MCL international prognostic index (MIPI) high-risk category and higher STAT5 response were predictors of shorter PFS and OS whilst MIPI high-risk category and high SYK response predicted shorter OS. In conclusion, we identified BCR signaling properties associated with poor clinical outcome and resistance to ibrutinib, thus highlighting the prognostic and predictive significance of BCR activity and advancing our understanding of signaling heterogeneity underlying clinical behavior of MCL.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/pathology , STAT5 Transcription Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Receptors, Antigen, B-Cell/metabolism
2.
Leukemia ; 37(8): 1671-1685, 2023 08.
Article in English | MEDLINE | ID: mdl-37386079

ABSTRACT

Resistance to tyrosine kinase inhibitors (TKIs) remains a clinical challenge in Ph-positive variants of chronic myeloid leukemia. We provide mechanistic insights into a previously undisclosed MEK1/2/BCR::ABL1/BCR/ABL1-driven signaling loop that may determine the efficacy of arsenic trioxide (ATO) in TKI-resistant leukemic patients. We find that activated MEK1/2 assemble into a pentameric complex with BCR::ABL1, BCR and ABL1 to induce phosphorylation of BCR and BCR::ABL1 at Tyr360 and Tyr177, and ABL1, at Thr735 and Tyr412 residues thus provoking loss of BCR's tumor-suppression functions, enhanced oncogenic activity of BCR::ABL1, cytoplasmic retention of ABL1 and consequently drug resistance. Coherently, pharmacological blockade of MEK1/2 induces dissociation of the pentameric MEK1/2/BCR::ABL1/BCR/ABL1 complex and causes a concurrent BCRY360/Y177, BCR::ABL1Y360/Y177 and cytoplasmic ABL1Y412/T735 dephosphorylation thereby provoking the rescue of the BCR's anti-oncogenic activities, nuclear accumulation of ABL1 with tumor-suppressive functions and consequently, growth inhibition of the leukemic cells and an ATO sensitization via BCR-MYC and ABL1-p73 signaling axes activation. Additionally, the allosteric activation of nuclear ABL1 was consistently found to enhance the anti-leukemic effects of the MEK1/2 inhibitor Mirdametinib, which when combined with ATO, significantly prolonged the survival of mice bearing BCR::ABL1-T315I-induced leukemia. These findings highlight the therapeutic potential of MEK1/2-inhibitors/ATO combination for the treatment of TKI-resistant leukemia.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Mice , Animals , Arsenic Trioxide/pharmacology , Fusion Proteins, bcr-abl/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Apoptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
3.
Signal Transduct Target Ther ; 8(1): 137, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949046

ABSTRACT

Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.


Subject(s)
Metabolomics , Neoplasms , Humans , Neoplasms/drug therapy , Energy Metabolism , Biomarkers
4.
Cell Mol Life Sci ; 79(10): 521, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36112236

ABSTRACT

Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an extremely variable clinical course. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course. Elucidating mechanisms regulating CAT expression in CLL is preeminent to understand disease mechanisms and develop strategies for improving its clinical management. In this study, we investigated the role of the CAT promoter rs1001179 single nucleotide polymorphism (SNP) and of the CpG Island II methylation encompassing this SNP in the regulation of CAT expression in CLL. Leukemic cells harboring the rs1001179 SNP T allele exhibited a significantly higher CAT expression compared with cells bearing the CC genotype. CAT promoter harboring the T -but not C- allele was accessible to ETS-1 and GR-ß transcription factors. Moreover, CLL cells exhibited lower methylation levels than normal B cells, in line with the higher CAT mRNA and protein expressed by CLL in comparison with normal B cells. Methylation levels at specific CpG sites negatively correlated with CAT levels in CLL cells. Inhibition of methyltransferase activity induced a significant increase in CAT levels, thus functionally validating the role of CpG methylation in regulating CAT expression in CLL. Finally, the CT/TT genotypes were associated with lower methylation and higher CAT levels, suggesting that the rs1001179 T allele and CpG methylation may interact in regulating CAT expression in CLL. This study identifies genetic and epigenetic mechanisms underlying differential expression of CAT, which could be of crucial relevance for the development of therapies targeting redox regulatory pathways in CLL.


Subject(s)
Catalase , DNA Methylation , Leukemia, Lymphocytic, Chronic, B-Cell , Catalase/genetics , Catalase/metabolism , DNA Methylation/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Methyltransferases/genetics , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
5.
Cells ; 11(13)2022 06 29.
Article in English | MEDLINE | ID: mdl-35805156

ABSTRACT

Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations of their components and in response to external microenvironmental cues. To functionally characterize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are frequently altered in T-ALL -namely Akt, Erk1/2, JNK, Lck, NF-κB p65, p38, STAT3, STAT5, ZAP70, Rb- in Jurkat, CEM and MOLT4 cell lines, using phospho-specific flow cytometry. Phosphorylation statuses of signaling proteins were measured in the basal condition or under modulation with H2O2, PMA, CXCL12 or IL7. Signaling profiles are characterized by a high variability across the analyzed T-ALL cell lines. Hierarchical clustering analysis documents that higher intrinsic phosphorylation of Erk1/2, Lck, ZAP70, and Akt, together with ZAP70 phosphorylation induced by H2O2, identifies Jurkat cells. In contrast, CEM are characterized by higher intrinsic phosphorylation of JNK and Rb and higher responsiveness of Akt to external stimuli. MOLT4 cells are characterized by higher basal STAT3 phosphorylation. These data document that phospho-specific flow cytometry reveals a high variability in intrinsic as well as modulated signaling networks across different T-ALL cell lines. Characterizing signaling network profiles across individual leukemia could provide the basis to identify molecular targets for personalized T-ALL therapy.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Flow Cytometry , Humans , Hydrogen Peroxide/pharmacology , Jurkat Cells , Proto-Oncogene Proteins c-akt
6.
Molecules ; 27(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35164326

ABSTRACT

Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and is characterized by poor clinical outcomes, with the majority of patients not being eligible for curative therapy and treatments only being applicable for early-stage tumors. CD44 is a receptor for hyaluronic acid (HA) and is involved in HCC progression. The aim of this work is to propose HA- and PEGylated-liposomes as promising approaches for the treatment of HCC. It has been found, in this work, that CD44 transcripts are up-regulated in HCC patients, as well as in a murine model of NAFLD/NASH-related hepatocarcinogenesis. Cell culture experiments indicate that HA-liposomes are more rapidly and significantly internalized by Huh7 cells that over-express CD44, compared with HepG2 cells that express low levels of the receptor, in which the uptake seems due to endocytic events. By contrast, human and murine macrophage cell lines (THP-1, RAW264.7) show improved and rapid uptake of PEG-modified liposomes without the involvement of the CD44. Moreover, the internalization of PEG-modified liposomes seems to induce polarization of THP1 towards the M1 phenotype. In conclusion, data reported in this study indicate that this strategy can be proposed as an alternative for drug delivery and one that dually and specifically targets liver cancer cells and infiltrating tumor macrophages in order to counteract two crucial aspect of HCC progression.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Drug Delivery Systems , Hyaluronic Acid/pharmacology , Liposomes/administration & dosage , Macrophages/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Polyethylene Glycols/chemistry , Animals , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Humans , Hyaluronic Acid/chemistry , Liposomes/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology
7.
Biomolecules ; 12(2)2022 02 13.
Article in English | MEDLINE | ID: mdl-35204804

ABSTRACT

The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Pancreatic Neoplasms/metabolism , Proteomics , Secretome , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Pancreatic Neoplasms
8.
Free Radic Biol Med ; 172: 264-272, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34129927

ABSTRACT

Aerobic organisms possess numerous antioxidant enzymatic families, including catalases, superoxide dismutases (SODs), peroxiredoxins (PRDXs), and glutathione peroxidases (GPXs), which work cooperatively to protect cells from an excess of reactive oxygen species (ROS) derived from endogenous metabolism or external microenvironment. Catalase, as well as other antioxidant enzymes, plays an important dichotomous role in cancer. Therefore, therapies aimed at either reverting the increased or further escalating catalase levels could be effective, depending on the metabolic landscape and on the redox status of cancer cells. This dichotomous role of catalase in cancers highlights the importance to deepen comprehensively the role and the regulation of this crucial antioxidant enzyme. The present review highlights the role of catalase in cancer and provides a comprehensive description of the molecular mechanisms associated with the multiple levels of catalase regulation.


Subject(s)
Antioxidants , Neoplasms , Catalase , Glutathione Peroxidase , Humans , Peroxiredoxins , Reactive Oxygen Species , Superoxide Dismutase
9.
Cytometry B Clin Cytom ; 100(2): 194-205, 2021 03.
Article in English | MEDLINE | ID: mdl-32598578

ABSTRACT

BACKGROUND: Anti-CD20 monoclonals (MoAbs) are used in a variety of autoimmune disorders. The aim is to eliminate memory B cells sustaining the tissue damage and the production of pathogenic autoantibodies, while preserving naïve cells. The disappearance of memory B cells and the repopulation by naïve cells correlate with good clinical response, while the reappearance of memory B cells and plasmablasts correlates with relapse or resistance to therapy. Anti-CD20 induce extremely low B cell levels, requiring high-resolution techniques. The immune monitoring protocol developed by ISCCA is described and validated, to provide a standardized method for the clinical decision-making process during anti-CD20 therapies in autoimmune diseases. METHODS: A 10-marker, 8-color staining panel (CD20-V450, CD45-V500c, CD4-FITC + sIgM-FITC, CD38-PE, CD3-PerCP Cy5.5, CD19-PE-Cy7, CD27-APC, CD8-APC H7 + sIgG-APC-H7) is used to identify B cells, plasma cells/blasts, naïve and memory B cells, sIgM+ and sIgG-switched memory B cells, T and NK cells, with high-sensitivity analysis (>106 CD45+ cells). RESULTS: After an anti-CD20 dose, the B cell level is about zero in most patients. If B cells remain virtually absent (<0.1/µl), subsetting is not reliable nor meaningful. If B cells raise >0.3-0.5/µl, subsetting is possible and informative, acquiring >1.0-1.5 × 106 CD45+ events. Further testings can follow the quality of B cell repopulation. If B cells become detectable (>1/µl), the prevalence of memory B cells indicates non-responsiveness or a possible relapse. CONCLUSIONS: The ISCCA Protocol is proposed for a standardized prospective monitoring of patients with autoimmune disorders, to assist the safe and rational usage of anti-CD20 therapies.


Subject(s)
Antigens, CD20/immunology , Autoimmune Diseases/therapy , B-Lymphocytes/immunology , Flow Cytometry , Immunophenotyping , Antigens, CD20/administration & dosage , Autoimmune Diseases/immunology , Humans
10.
Br J Haematol ; 192(2): 333-342, 2021 01.
Article in English | MEDLINE | ID: mdl-33216963

ABSTRACT

Recently, clinical trial results have established inhibitors of B-cell receptor (BCR)-associated kinase (BAKi), with or without CD20 moniclonal antibodies (mAbs), as the preferred first-line treatment for most chronic lymphocytic leukaemia (CLL) patients. Using phosphospecific flow cytometry, we showed that in leukaemic cells from CLL patients the CD20 therapeutic antibodies - rituximab, ofatumumab, and obinutuzumab - inhibited BCR signalling pathways targeting preferentially pBTKY551 - but not BTKY223 - and pAKT. On the contrary, ibrutinib and idelalisib reduced pBTKY223 to a higher extent than pBTKY551 . The strong reduction of pAKT induced by idelalisib was enhanced by its combination with rituximab or ofatumumab. Moreover, CD20 mAbs and BAKi induced the death of leukaemia cells that was significantly potentiated by their combination. Analysis of the enhancement of cell death in these combinations revealed an approximately additive enhancement induced by rituximab or obinutuzumab combined with ibrutinib or idelalisib. Taken together, our data identified negative regulatory effects of CD20 mAbs and their combinations with BAKi on BCR signalling and cell survival in CLL. In conclusion, this study advances our understanding of mechanisms of action of CD20 mAbs as single agents or in combination with BAKi and could inform on the potential of combined therapies in ongoing and future clinical trials in patients with CLL.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptors, Antigen, B-Cell/metabolism , Rituximab/therapeutic use , Adenine/analogs & derivatives , Adenine/therapeutic use , Antigens, CD20/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Piperidines/therapeutic use , Purines/therapeutic use , Quinazolinones/therapeutic use , Signal Transduction/drug effects
11.
Cells ; 9(7)2020 06 28.
Article in English | MEDLINE | ID: mdl-32605166

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is typically characterized by high chemoresistance and metastatic spread, features mainly attributable to cancer stem cells (CSCs). It is of central interest the characterization of CSCs and, in particular, the study of their metabolic features in order to selectively identify their peculiarities for an efficient therapeutic approach. In this study, CSCs have been obtained by culturing different PDAC cell lines with a specific growth medium. Cells were characterized for the typical stem/mesenchymal properties at short-, medium-, and long-term culture. Metabolomics, proteomics, analysis of oxygen consumption rate in live cells, and the effect of the inhibition of lactate transporter on cell proliferation have been performed to delineate the metabolism of CSCs. We show that gradually de-differentiated pancreatic cancer cells progressively increase the expression of both stem and epithelial-to-mesenchymal transition markers, shift their metabolism from a glycolytic to an oxidative one, and lastly gain a quiescent state. These quiescent stem cells are characterized by high chemo-resistance, clonogenic ability, and metastatic potential. Re-differentiation reverts these features, re-activating their proliferative capacity and glycolytic metabolism, which generally correlates with high aggressiveness. These observations add an important piece of knowledge to the comprehension of the biology of CSCs, whose metabolic plasticity could be exploited for the generation of promising and selective therapeutic approaches for PDAC patients.


Subject(s)
Pancreatic Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/metabolism , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Cellular Senescence/physiology , Glycolysis/physiology , Humans , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Oxygen Consumption/physiology , Zebrafish
12.
Biomolecules ; 10(6)2020 06 09.
Article in English | MEDLINE | ID: mdl-32526853

ABSTRACT

The cancer secretome is a rich repository of useful information for both cancer biology and clinical oncology. A better understanding of cancer secretome is particularly relevant for pancreatic ductal adenocarcinoma (PDAC), whose extremely high mortality rate is mainly due to early metastasis, resistance to conventional treatments, lack of recognizable symptoms, and assays for early detection. TP53 gene is a master transcriptional regulator controlling several key cellular pathways and it is mutated in ~75% of PDACs. We report the functional effect of the hot-spot p53 mutant isoforms R175H and R273H on cancer cell secretome, showing their influence on proliferation, chemoresistance, apoptosis, and autophagy, as well as cell migration and epithelial-mesenchymal transition. We compared the secretome of p53-null AsPC-1 PDAC cells after ectopic over-expression of R175H-mutp53 or R273H-mutp53 to identify the differentially secreted proteins by mutant p53. By using high-resolution SWATH-MS technology, we found a great number of differentially secreted proteins by the two p53 mutants, 15 of which are common to both mutants. Most of these secreted proteins are reported to promote cancer progression and epithelial-mesenchymal transition and might constitute a biomarker secreted signature that is driven by the hot-spot p53 mutants in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Carcinoma, Pancreatic Ductal/pathology , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Humans , Mutation , Pancreatic Neoplasms/pathology , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
13.
Front Neurosci ; 14: 145, 2020.
Article in English | MEDLINE | ID: mdl-32194369

ABSTRACT

The olfactory neuroepithelium is located in the upper vault of the nasal cavity, lying on the olfactory cleft and projecting into the dorsal portion of the superior and middle turbinates beyond the mid-portion of the nasal septum. It is composed of a variety of cell types including olfactory sensory neurons, supporting glial-like cells, microvillar cells, and basal stem cells. The cells of the neuroepithelium are often intermingled with respiratory and metaplastic epithelial cells. Olfactory neurons undergo a constant self-renewal in the timespan of 2-3 months; they are directly exposed to the external environment, and thus they are vulnerable to physical and chemical injuries. The latter might induce metabolic perturbations and ultimately be the cause of cell death. However, the lifespan of olfactory neurons is biologically programmed, and for this reason, these cells have an accelerated metabolic cycle leading to an irreversible apoptosis. These characteristics make these cells suitable for research related to nerve cell degeneration and aging. Recent studies have shown that a non-invasive and painless olfactory brushing procedure allows an efficient sampling from the olfactory neuroepithelium. This approach allows to detect the pathologic prion protein in patients with sporadic Creutzfeldt-Jakob disease, using the real-time quaking-induced conversion assay. Investigating the expression of all the proteins associated to neurodegeneration in the cells of the olfactory mucosa is a novel approach toward understanding the pathogenesis of human neurodegenerative diseases. Our aim was to investigate the expression of α-synuclein, ß-amyloid, tau, and TDP-43 in the olfactory neurons of normal subjects. We showed that these proteins that are involved in neurodegenerative diseases are expressed in olfactory neurons. These findings raise the question on whether a relationship exists between the mechanisms of protein aggregation that occur in the olfactory bulb during the early stage of the neurodegenerative process and the protein misfolding occurring in the olfactory neuroepithelium.

14.
Semin Cell Dev Biol ; 98: 4-14, 2020 02.
Article in English | MEDLINE | ID: mdl-31039394

ABSTRACT

Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.


Subject(s)
Neoplasms/metabolism , Succinate Dehydrogenase/metabolism , Succinic Acid/metabolism , Animals , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasms/diagnosis , Succinate Dehydrogenase/genetics
15.
Molecules ; 24(18)2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31509965

ABSTRACT

Collagen Tissue Disease-associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases. Liposomes with HA of two molecular weights were prepared and characterized. Targeting efficiency was assessed toward CTD-ILD and BOS cells by flow cytometry and confocal microscopy and immune modulation by RT-PCR and ELISA techniques. HA-liposomes were internalized by CTD-ILD and BOS cells expressing CD44, and this effect increased with higher HA MW. In THP-1 cells, HA-liposomes decreased pro-inflammatory cytokines IL-1ß, IL-12, and anti-fibrotic VEGF transcripts but increased TGF-ß mRNA. However, upon analyzing TGF-ß release from healthy donors-derived monocytes, we found liposomes did not alter the release of active pro-fibrotic cytokine. All liposomes induced mild activation of neutrophils regardless of the presence of HA. HA liposomes could be also applied for lung fibrotic diseases, being endowed with low pro-inflammatory activity, and results confirmed that higher MW HA are associated to an increased targeting efficiency for CD44 expressing LFs-derived from BOS and CTD-ILD patients.


Subject(s)
Bronchiolitis Obliterans/drug therapy , Hyaluronic Acid/pharmacology , Liposomes/pharmacology , Pulmonary Fibrosis/drug therapy , A549 Cells , Adult , Bronchiolitis Obliterans/pathology , Drug Delivery Systems , Gene Expression Regulation/drug effects , Healthy Volunteers , Humans , Hyaluronan Receptors/drug effects , Hyaluronic Acid/chemistry , Liposomes/chemistry , Microscopy, Confocal , Monocytes/drug effects , Pulmonary Fibrosis/pathology , Transforming Growth Factor beta/genetics , Vascular Endothelial Growth Factor A/genetics
16.
Int J Mol Sci ; 20(9)2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31027346

ABSTRACT

Several studies indicate that the cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has pleiotropic functions independent of its canonical role in glycolysis. The GAPDH functional diversity is mainly due to post-translational modifications in different amino acid residues or due to protein-protein interactions altering its localization from cytosol to nucleus, mitochondria or extracellular microenvironment. Non-glycolytic functions of GAPDH include the regulation of cell death, autophagy, DNA repair and RNA export, and they are observed in physiological and pathological conditions as cancer and neurodegenerative disorders. In disease, the knowledge of the mechanisms regarding GAPDH-mediated cell death is becoming fundamental for the identification of novel therapies. Here, we elucidate the correlation between autophagy and GAPDH in cancer, describing the molecular mechanisms involved and its impact in cancer development. Since autophagy is a degradative pathway associated with the regulation of cell death, we discuss recent evidence supporting GAPDH as a therapeutic target for autophagy regulation in cancer therapy. Furthermore, we summarize the molecular mechanisms and the cellular effects of GAPDH aggregates, which are correlated with mitochondrial malfunctions and can be considered a potential therapeutic target for various diseases, including cancer and neurodegenerative disorders.


Subject(s)
Autophagy/physiology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Animals , Humans , Models, Biological
18.
Br J Cancer ; 119(8): 994-1008, 2018 10.
Article in English | MEDLINE | ID: mdl-30318520

ABSTRACT

BACKGROUND: The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy. METHODS: A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection. RESULTS: We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O2-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs. CONCLUSIONS: The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acetylcysteine/pharmacology , Free Radical Scavengers/pharmacology , Heat-Shock Proteins/biosynthesis , Neoplasms/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Tumor Suppressor Protein p53/genetics , Uncoupling Protein 2/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Heat-Shock Proteins/metabolism , Humans , MCF-7 Cells , Male , Middle Aged , Mitochondria/metabolism , Neoplasms/pathology , Oxygen/metabolism , Reactive Oxygen Species/metabolism
19.
Eur J Histochem ; 62(4)2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30362673

ABSTRACT

Published studies regarding Bichat fat pad focused, quite exclusively, on the implant of this adipose depot for different facial portions reconstruction. The regenerative components of Bichat fat pad were poorly investigated. The present study aimed to describe by an ultrastructural approach the Bichat fat pad, providing novel data at the ultrastructural and cellular level. This data sets improve the knowledge about the usefulness of the Bichat fat pad in regenerative and reconstructive surgery. Bichat fat pads were harvested form eight patients subjected to maxillofacial, dental and aesthetic surgeries. Biopsies were used for the isolation of mesenchymal cell compartment and for ultrastructural analysis. Respectively, Bichat fat pads were either digested and placed in culture for the characterization of mesenchymal stem cells (MSCs) or, were fixed in glutaraldehyde 2% and processed for transmission or scanning electron microscopy. Collected data showed very interesting features regarding the cellular composition of the Bichat fat pad and, in particular, experiments aimed to characterized the MSCs showed the presence of a sub-population of MSCs characterized by the expression of specific markers that allow to classify them as multilineage differentiating stress enduring cells.  This data set allows to collect novel information about regenerative potential of Bichat fat pad that could explain the success of its employment in reconstructive and regenerative medicine.


Subject(s)
Adipose Tissue/cytology , Adipose Tissue/physiology , Cell Differentiation , Mesenchymal Stem Cells/cytology , Adipose Tissue/ultrastructure , Adult , Female , Humans , Male , Microscopy, Electron, Transmission , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...