Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 82(4): 592-601, 2022 May.
Article in English | MEDLINE | ID: mdl-35435442

ABSTRACT

Absorbable organic halogens (AOX) are a global parameter which refers to a group of chemical compounds that contain one or more chlorine, bromine or iodine atoms in their molecule and can easily adsorb on activated carbon. The global concern related to the occurrence of the AOX compounds in the environment is due to their toxic and mutagenic effects on aquatic organisms and their potential role as inhibitors of microorganism growth, even at AOX low concentrations. The purpose of this study was to analyze the presence, occurrence and composition of absorbable organic halogens in wastewater and sewage sludge. In addition, their genotoxicity effect on the environment was tested on a bacterial biological model. Daily mass loading, mass emission and fate of AOX parameter were investigated in two wastewater treatment plants (wastewater and sewage sludge samples) from Romania, Galati and Iasi. Their AOX daily mass loadings (151 and 55.4 g/day/1000people) and mass emissions into the environment (47.8 and 23.5 g/day/1000 people) for both locations were correlated with the concentration level of volatile organic compounds, chlorophenols, organochlorine pesticides and polychlorinated biphenyls from both wastewater and sewage sludge, respectively. Concentration levels of detected halogenated organic compounds (regulated by current standards) accounted only for a small percentage (3.70-14.5%) from the total AOX amount. An exception was observed in the case of dehydrated sludge samples where the identified compounds accounted for 80% of the AOX content from Iasi WWTP and 53% for Galati. Evaluating the genotoxic activity of AOX in sludge samples showed that genotoxicity was not induced up to 100 µg/mL dehydrated sludge.


Subject(s)
Water Pollutants, Chemical , Water Purification , Halogens/analysis , Humans , Romania , Sewage/chemistry , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Article in English | MEDLINE | ID: mdl-33471573

ABSTRACT

As environment emerging contaminants of anthropogenic origin, antidiabetic drugs are present in the range of high ng/L to ng/mL in the influent and the effluent of the waste water treatment plant (WWTP). The metformin compound is the most used hypoglycemic agent in the world. The aim of this study was to develop a new analytic method, based on solid phase extraction followed by liquid chromatography coupled with mass spectrometric detector (SPE-LC-MS/MS), for identification and quantification of 5 antidiabetic compounds (glibenclamide/glyburide, glimepiride, metformin, glipizide, guanyl urea, gliclazide) and one degradation product (guanyl urea). The investigated environmental samples were the influent and the effluent of four urbans WWTP's. By validating of the analytical method, it was obtained low LOQ's (0.2-4.5 ng/L), satisfactory recovery rates (53.6-116.8%), and corresponding performance parameters: inter-day precision (4.9-8.4%) and reproducibility (11.3-14.6%). The concentrations of antidiabetics were as follow in influent and effluent: metformin 76-2041ng/L and 2-206ng/L, gliclazide (14.1-42.4 ng/L, and 3.3-19.1), glipizide (7.5-11.2 ng/L and 6.5-10ng/L), guanyl urea (6.2-7.3 and 8.3-21.3 ng/L). The efficiency of elimination of the antidiabetics in WWTP's was maximum for metformin (67.6-98.5%), followed, by gliclazide (72.9-78.2%). The lowest elimination efficiency was calculated for glipizide (10.7-13.3%). The guanyl urea undergoes a formation process (74.5-84.2%) in effluent, from the metformin contained in influent.


Subject(s)
Hypoglycemic Agents/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Environmental Monitoring , Gliclazide/analysis , Glipizide/analysis , Glyburide/analysis , Metformin/analysis , Reproducibility of Results , Solid Phase Extraction , Sulfonylurea Compounds/analysis , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...