Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 47(7): 842-850, 2019 10.
Article in English | MEDLINE | ID: mdl-31426723

ABSTRACT

Furan, a possible human carcinogen, is a product of incomplete combustion and is present in cigarette smoke, engine exhaust, and processed food. Oral administration induces liver toxicity and carcinogenesis in F344 rats and B6C3F1 mice. To assess possible adverse effects from inhalation, A/J mice were nose-only exposed for 3 hours to furan (0, 30, 75, 150, 300, or 600 ppmv) and euthanized after 24 hours, 48 hours, or 1 week. Histopathology evaluation revealed bronchiolar club cell necrosis (diffuse, marked) with airway denudation following exposure to 300 and 600 ppmv furan with evidence of club cell regeneration and partial repair after 1 week. Initial signs of hepatotoxicity were observed in the 150 ppmv furan-exposed group. Acute necrosis and mineralization were observed in livers at 24 and 48 hours with hepatocyte regeneration by 1-week postexposure in mice exposed to 300 and 600 ppmv furan; the 300 ppmv exposed group had multifocal mineralization that evoked a mild granulomatous response. Measurement of urinary furan metabolites confirmed that the mice metabolized furan to the toxic intermediate, cis-2-butene-1,4-dial. These observations indicate that inhaled furan is toxic to lungs with club cells as the target as well as liver.


Subject(s)
Furans/toxicity , Lung/drug effects , Alanine Transaminase/blood , Animals , Female , Furans/administration & dosage , Furans/metabolism , Inhalation Exposure , Liver/drug effects , Liver/pathology , Lung/pathology , Mice , Necrosis
2.
Cancer Prev Res (Phila) ; 12(2): 69-78, 2019 02.
Article in English | MEDLINE | ID: mdl-30606719

ABSTRACT

Nicotinamide, the amide form of vitamin B3, and budesonide, a synthetic glucocorticoid used in the treatment of asthma, were evaluated to determine their individual and combinational chemopreventive efficacy on benzo(a)pyrene-induced lung tumors in female A/J mice. Nicotinamide fed at a dietary concentration of 0.75% significantly inhibited tumor multiplicity. Nicotinamide by aerosol inhalation at doses up to 15 mg/kg/day did not result in a statistically significant reduction in tumor multiplicity. Finally, dietary nicotinamide was administered with aerosol budesonide and tumor multiplicity reduced by 90% at 1 week and 49% at 8 weeks post last carcinogen dose. We conclude nicotinamide is an effective and safe agent for lung cancer dietary prevention at both early- and late-stage carcinogenesis and that efficacy is increased with aerosol budesonide. Combination chemoprevention with these agents is a well-tolerated and effective strategy which could be clinically advanced to human studies.


Subject(s)
Budesonide/administration & dosage , Carcinogenesis/drug effects , Dietary Supplements , Lung Neoplasms/prevention & control , Niacinamide/administration & dosage , Administration, Inhalation , Animals , Anti-Inflammatory Agents/administration & dosage , Apoptosis , Benzo(a)pyrene/toxicity , Carcinogenesis/pathology , Carcinogens/toxicity , Cell Proliferation , Female , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mice , Mice, Inbred A , Tumor Cells, Cultured , Vitamin B Complex/administration & dosage
3.
Am J Transl Res ; 10(3): 875-880, 2018.
Article in English | MEDLINE | ID: mdl-29636877

ABSTRACT

Talactoferrin alpha is a promising non-toxic solid tumor cancer agent that met with success in the treatment of early-stage lung cancer clinically in humans. It is well-tolerated, anddendritic cell-stimulation is a target. We tested the efficacy of this agent in a chemoprevention setting in A/J mice. All groups received benzo[a]pyrene (B[a]P) by oral gavage in three doses of 3 mg/kg body weight over the course of one week. Animals were then randomized into 5 groups of 24 mice per group based on weight. Experimental diets oftalactoferrin alpha (Agennix Inc., Indianapolis, IN), at 1.40% and 0.42% of the diet, were started one week or eight weeks after the last dose of B[a]P. Animals were continued on the feeding schedule, weighed weekly, and monitored for toxicity. The study was concluded 16 weeks after administration of B[a]P. The agent was well-tolerated for the duration of the experiment and there was no observable toxicity or weight change. The average number of adenomas per animal was 14.04 ± 0.93 (N=24) in the control group, 18.14 ± 1.45 (N=22) in the early low-dose group, 16.70 ± 1.30 (N=23) in the late low-dose group, 15.09 ± 1.41 (N=23) in the early high-dose group and 14.46 ± 1.21 (N=24) in the late high-dose group. We conclude talactoferrinalpha is well-tolerated. However, it did not inhibit carcinogenesis at a dose of 1.4% or 0.42% of the diet, which equates to human doses of 1.12 g/kg/day or 0.336 g/kg/day.

4.
Cancer Prev Res (Phila) ; 10(2): 116-123, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28052934

ABSTRACT

Combination treatment with pioglitazone and metformin is utilized clinically in the treatment of type II diabetes. Treatment with this drug combination reduced the development of aerodigestive cancers in this patient population. Our goal is to expand this treatment into clinical lung cancer chemoprevention. We hypothesized that dietary delivery of metformin/pioglitazone would prevent lung adenoma formation in A/J mice in a benzo[a]pyrene (B[a]P)-induced carcinogenesis model while modulating chemoprevention and anti-inflammatory biomarkers in residual adenomas. We found that metformin (500 and 850 mg/kg/d) and pioglitazone (15 mg/kg/d) produced statistically significant decreases in lung adenoma formation both as single-agent treatments and in combination, compared with untreated controls, after 15 weeks. Treatment with metformin alone and in combination with pioglitazone resulted in statistically significant decreases in lung adenoma formation at both early- and late-stage interventions. Pioglitazone alone resulted in significant decreases in adenoma formation only at early treatment intervention. We conclude that oral metformin is a viable chemopreventive treatment at doses ranging from 500 to 1,000 mg/kg/d. Pioglitazone at 15 mg/kg/d is a viable chemopreventive agent at early-stage interventions. Combination metformin and pioglitazone performed equal to metformin alone and better than pioglitazone at 15 mg/kg/d. Because the drugs are already FDA-approved, rapid movement to human clinical studies is possible. Cancer Prev Res; 10(2); 116-23. ©2017 AACR.


Subject(s)
Adenoma/pathology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Chemoprevention/methods , Lung Neoplasms/pathology , Adenoma/prevention & control , Animals , Dose-Response Relationship, Drug , Female , Hypoglycemic Agents/administration & dosage , Lung Neoplasms/prevention & control , Metformin/administration & dosage , Mice , Pioglitazone , Thiazolidinediones/administration & dosage
5.
Cancer Prev Res (Phila) ; 10(2): 124-132, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27993834

ABSTRACT

Pioglitazone is a PPARγ agonist commonly prescribed for the clinical treatment of diabetes. We sought to expand its use to lung cancer prevention in a benzo[a]pyrene (B[a]P) mouse model with direct lung delivery via inhalation. Initially, we conducted inhalational toxicity experiments with 0, 15, 50, 150, and 450 µg/kg body weight/day pioglitazone in 40 A/J mice. We examined the animals for any physical toxicity and bronchoalveolar lavage fluids for inflammatory and cytotoxicity markers. Doses up to and including 450 µg/kg bw/d failed to demonstrate toxicity with aerosol pioglitazone. For chemoprevention experiments, A/J mice were randomized to treatment groups of inhaled doses of 0, 50, 150, or 450 µg/kg bw/d pioglitazone 1 or 8 weeks after the last dose of B[a]P. For the early treatment group, we found up to 32% decrease in lung adenoma formation with 450 µg/kg bw/d pioglitazone. We repeated the treatments in a second late-stage experiment and found up to 44% decreases in lung adenoma formation in doses of pioglitazone of 150 and 450 µg/kg bw/day. Both the early- and the late-stage experiments demonstrated biologically relevant and statistically significant decreases in adenoma formation. We conclude that aerosol pioglitazone is well-tolerated in the A/J mouse model and a promising chemoprevention agent for the lower respiratory tract. Cancer Prev Res; 10(2); 124-32. ©2016 AACR.


Subject(s)
Adenoma/pathology , Antineoplastic Agents/administration & dosage , Chemoprevention/methods , Lung Neoplasms/pathology , Thiazolidinediones/administration & dosage , Administration, Inhalation , Aerosols , Animals , Antineoplastic Agents/adverse effects , Dose-Response Relationship, Drug , Female , Mice , Pioglitazone , Random Allocation , Thiazolidinediones/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...